Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Elevation-dependent climate change in mountain environments

Abstract

Mountain regions show rapid environmental changes under anthropogenic warming. The rates of these changes are often stratified by elevation, leading to elevation-dependent climate change (EDCC). In this Review, we examine evidence of systematic change in the elevation profiles of air temperature and precipitation (including snow). On a global scale, differences between mountain and lowland trends for temperature, precipitation and snowfall are 0.21 °C century–1 (enhanced mountain warming), –11.5 mm century–1 (enhanced mountain drying) and –25.6 mm century–1 (enhanced mountain snow loss), respectively, for 1980–2020, based on averaging available gridded datasets. Regional analyses sometimes show opposite trend patterns. This EDCC is primarily driven by changes in surface albedo, specific humidity and atmospheric aerosol concentrations. Throughout the twenty-first century, most models predict that enhanced warming in mountain regions will continue (at 0.13 °C century–1), but precipitation changes are less certain. Superimposed upon these global trends, EDCC patterns can vary substantially between mountain regions. Patterns in the Rockies and the Tibetan Plateau are more consistent with the global mean than other regions. In situ mountain observations are skewed towards low elevations, and understanding of EDCC is biased towards mid-latitudes. Efforts to address this uneven data distribution and to increase the spatial and temporal resolution of models of mountain processes are urgently needed to understand the impacts of EDCC on ecological and hydrological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors and processes associated with elevation-dependent climate change in mountain environments.
Fig. 2: Expected vertical profiles of important mountain variables in a warmer world.
Fig. 3: Observed temperature and precipitation changes in mountain regions.
Fig. 4: Projected temperature and precipitation changes in mountain regions.
Fig. 5: Synthesis of observed elevation-dependent climate change.

Similar content being viewed by others

References

  1. IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds. Masson-Delmotte, V. et al.) 3–32 (Cambridge Univ. Press, 2021).

  2. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article  Google Scholar 

  3. Letterly, A., Key, J. & Liu, Y. Arctic climate: changes in sea ice extent outweigh changes in snow cover. Cryosphere 12, 3373–3382 (2018).

    Article  Google Scholar 

  4. Jenkins, M. & Dai, A. The impact of sea-ice loss on Arctic climate feedbacks and their role for Arctic amplification. Geophys. Res. Lett. 48, e2021GL094599 (2021).

    Article  Google Scholar 

  5. Mudryk, L. et al. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere 14, 2495–2514 (2020).

    Article  Google Scholar 

  6. Oehri, J. et al. Vegetation type is an important predictor of the Arctic summer land surface energy budget. Nat. Commun. 13, 6379 (2022).

    Article  CAS  Google Scholar 

  7. Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 16, 093003 (2021).

    Article  CAS  Google Scholar 

  8. Wang, Q., Fan, X. & Wang, M. Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep. 6, 19219 (2016).

    Article  CAS  Google Scholar 

  9. You, Q. et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences. Earth Sci. Rev. 217, 103625 (2021).

    Article  Google Scholar 

  10. Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Article  Google Scholar 

  11. Pepin, N. C. & Lundquist, J. D. Temperature trends at high elevations: patterns across the globe. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034026 (2008).

    Article  Google Scholar 

  12. Rottler, E., Kormann, C., Francke, T. & Bronstert, A. Elevation-dependent warming in the Swiss Alps 1981–2017: features, forcings and feedbacks. Int. J. Climatol. 39, 2556–2568 (2019).

    Article  Google Scholar 

  13. Loomis, S. E. et al. The tropical lapse rate steepened during the last glacial maximum. Sci. Adv. 3, e1600815 (2017).

    Article  Google Scholar 

  14. Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. https://doi.org/10.1029/2020RG000730 (2022).

    Article  Google Scholar 

  15. Hock, R. & Rasul, G. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Portner, H.-O. & Roberts, D. C.) 131–202 (IPCC, Cambridge Univ. Press, 2019).

  16. Kuhn, M. & Olefs, M. in Oxford Research Encyclopedia of Climate Science https://doi.org/10.1093/acrefore/9780190228620.013.762 (Oxford Univ. Press, 2020).

  17. Giorgi, F. et al. Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci. 9, 584–589 (2016).

    Article  CAS  Google Scholar 

  18. Napoli, A., Crespi, A., Ragone, F., Maugeri, M. & Pasquero, C. Variability of orographic enhancement of precipitation in the Alpine region. Sci. Rep. 9, 13352 (2019).

    Article  Google Scholar 

  19. Notarnicola, C. Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020. Sci. Rep. 12, 13731 (2022).

    Article  CAS  Google Scholar 

  20. Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 243, 111781 (2020).

    Article  Google Scholar 

  21. Zhu, L. et al. Elevation-dependent sensible heat flux trend over the Tibetan Plateau and its possible causes. Clim. Dyn. 52, 3997–4009 (2019).

    Article  Google Scholar 

  22. Guo, X., Wang, L., Tian, L. & Li, X. Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. Int. J. Climatol. 37, 1117–1126 (2017).

    Article  Google Scholar 

  23. Rasul, G. & Molden, D. The global social and economic consequences of mountain cryospheric change. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00091 (2019).

    Article  Google Scholar 

  24. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  CAS  Google Scholar 

  25. Musselman, K. N., Addor, N., Vano, J. A. & Molotch, N. P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 11, 418–424 (2021).

    Article  Google Scholar 

  26. Marty, C. & Tilg, A. M. Recent evidence of large-scale receding snow water equivalents in the European Alps. J. Hydrometeorol. 18, 1021–1031 (2017).

    Article  Google Scholar 

  27. Vuille, M. et al. Rapid decline of snow and ice in the tropical Andes — impacts, uncertainties and challenges ahead. Earth Sci. Rev. 176, 195–213 (2018).

    Article  Google Scholar 

  28. Matiu, M. et al. Observed snow depth trends in the European Alps: 1971 to 2019. Cryosphere 15, 1343–1382 (2021).

    Article  Google Scholar 

  29. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  CAS  Google Scholar 

  30. Guidicelli, M., Huss, M., Gabella, M. & Salzmann, N. Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning. Cryosphere 17, 977–1002 (2023).

    Article  Google Scholar 

  31. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. PNAS 114, 9770–9778 (2017).

    Article  CAS  Google Scholar 

  32. Fuchs, S. et al. Short communication: a model to predict flood loss in mountain areas. Environ. Model. Softw. 117, 176–180 (2019).

    Article  Google Scholar 

  33. Feng, W., Lu, H., Yao, T. & Yu, Q. Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century. Sci. Rep. 10, 14323 (2020).

    Article  CAS  Google Scholar 

  34. Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Article  Google Scholar 

  35. Haeberli, W., Schaub, Y. & Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293, 405–417 (2017).

    Article  Google Scholar 

  36. Giacona, F. et al. Upslope migration of snow avalanches in a warming climate. PNAS 118, e2107306118 (2021).

    Article  CAS  Google Scholar 

  37. Ding, Y. et al. Increasing cryospheric hazards in a warming climate. Earth Sci. Rev. 213, 103500 (2021).

    Article  Google Scholar 

  38. Harrison, S. et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12, 1195–1209 (2018).

    Article  Google Scholar 

  39. Veh, G. et al. Progressively smaller glacier lake outburst floods despite worldwide growth in lake area. Nat. Water 3, 271–283 (2025).

    Article  Google Scholar 

  40. Li, Z. et al. Altitude dependency of trends of daily climate extremes in southwestern China, 1961–2008. J. Geogr. Sci. 22, 416–430 (2012).

    Article  Google Scholar 

  41. You, Q. et al. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 36, 2399–2417 (2011).

    Article  Google Scholar 

  42. Salzmann, N., Scherrer. S., Allen, S. & Roher, M. in The High Mountain Cryosphere (eds Huggel, C. et al.) 28–49 (Cambridge Univ. Press, 2015).

  43. Bondesan, A. & Francese, R. G. The climate-driven disaster of the Marmolada Glacier (Italy). Geomorphology 431, 108687 (2023).

    Article  Google Scholar 

  44. Bozzoli, M. et al. Long-term snowfall trends and variability in the Alps. Int. J. Climatol. 44, 4571–4591, https://doi.org/10.1002/joc.8597 (2024).

    Article  Google Scholar 

  45. Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires. Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).

    Article  CAS  Google Scholar 

  46. Davolio, S., Della Fera, S., Laviola, S., Miglietta, M. M. & Levizzani, V. Heavy precipitation over Italy from the Mediterranean storm ‘Vaia’ in October 2018: assessing the role of an atmospheric river. Mon. Weather. Rev. 148, 3571–3588 (2020).

    Article  Google Scholar 

  47. Giovannini, L., Davolio, S., Zaramella, M., Zardi, D. & Borga, M. Multi-model convection-resolving simulations of the October 2018 Vaia storm over Northeastern Italy. Atmos. Res. 253, 105455 (2021).

    Article  Google Scholar 

  48. Anderegg, W. R. L. et al. Tree mortality from drought, insects, and their interactions in a changing climate. N. Phytol. 208, 674–683 (2015).

    Article  Google Scholar 

  49. Ghatak, D., Sinsky, E. & Miller, J. Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia. Environ. Res. Lett. 9, 114008 (2014).

    Article  Google Scholar 

  50. Palazzi, E., Filippi, L. & von Hardenberg, J. Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations. Clim. Dyn. 48, 3991–4008 (2017).

    Article  Google Scholar 

  51. Palazzi, E., Mortarini, L., Terzago, S. & von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 52, 2685–2702 (2019).

    Article  Google Scholar 

  52. Rangwala, I., Sinsky, E. & Miller, J. R. Variability in projected elevation dependent warming in boreal midlatitude winter in CMIP5 climate models and its potential drivers. Clim. Dyn. 46, 2115–2122 (2016).

    Article  Google Scholar 

  53. Lugauer, M. et al. Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus B Chem. Phys. Meteorol. 50, 76–92 (1998).

    Article  Google Scholar 

  54. Napoli, A., Desbiolles, F., Parodi, A. & Pasquero, C. Aerosol indirect effects in complex-orography areas: a numerical study over the Great Alpine Region. Atmos. Chem. Phys. 22, 3901–3909 (2022).

    Article  CAS  Google Scholar 

  55. Jerez, S. et al. Sensitivity of surface solar radiation to aerosol-radiation and aerosol-cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols. Geosci. Model. Dev. 14, 1533–1551 (2021).

    Article  CAS  Google Scholar 

  56. Barry, R. Mountain Weather and Climate (Cambridge Univ. Press, 2008).

  57. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  58. Vergara-Temprado, J., Ban, N. & Schär, C. Extreme sub-hourly precipitation intensities scale close to the clausius-clapeyron rate over Europe. Geophys. Res. Lett. https://doi.org/10.1029/2020GL089506 (2021).

    Article  Google Scholar 

  59. Houze, R. A., Rasmussen, K. L., Zuluaga, M. D. & Brodzik, S. R. The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 53, 994–1021 (2015).

    Article  Google Scholar 

  60. Kad, P., Ha, K. J., Lee, S. S. & Chu, J. E. Projected changes in mountain precipitation under CO2-induced warmer climate. Earths Future https://doi.org/10.1029/2023EF003886 (2023).

    Article  Google Scholar 

  61. Siler, N. & Roe, G. How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys. Res. Lett. 41, 2606–2613 (2014).

    Article  Google Scholar 

  62. Robinson, D. A. & Kukla, G. Albedo of a dissipating snow cover. J. Clim. Appl. Meteorol. 23, 1626–1634 (1984).

    Article  Google Scholar 

  63. Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).

    Article  Google Scholar 

  64. Hadley, O. L. & Kirchstetter, T. W. Black-carbon reduction of snow albedo. Nat. Clim. Change 2, 437–440 (2012).

    Article  CAS  Google Scholar 

  65. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  66. Wang, Y. et al. Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology 97, 1668–1679 (2016).

    Article  Google Scholar 

  67. Ramtvedt, E. N., Bollandsås, O. M., Næsset, E. & Gobakken, T. Relationships between single-tree mountain birch summertime albedo and vegetation properties. Agric. For. Meteorol. 307, 108470 (2021).

    Article  Google Scholar 

  68. Williamson, S. N., Barrio, I. C., Hik, D. S. & Gamon, J. A. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic. Glob. Change Biol. 22, 3621–3631 (2016).

    Article  Google Scholar 

  69. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  Google Scholar 

  70. Lenssen, N. J. L. et al. Improvements in the GISTEMP Uncertainty Model. J. Geophys. Res. 124, 6307–6326 (2019).

    Article  Google Scholar 

  71. Rohde, R. A. & Hausfather, Z. The Berkeley Earth Land/Ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    Article  Google Scholar 

  72. Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 8, 52 (2017).

    Article  Google Scholar 

  73. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  74. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  75. Fan, X., Wang, Q., Wang, M. & Jiménez, C. V. Warming amplification of minimum and maximum temperatures over high-elevation regions across the globe. PLoS ONE 10, e0140213 (2015).

    Article  Google Scholar 

  76. Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S. & Cáceres, B. Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. 120, 3745–3757 (2015).

    Article  Google Scholar 

  77. Vuille, M., Bradley, R. S., Werner, M. & Keimig, F. 20th century climate change in the tropical Andes: observations and model results. Clim. Change 59, 75–99 (2003).

    Article  Google Scholar 

  78. Aguilar-Lome, J. et al. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017). Int. J. Appl. Earth Obs. Geoinf. 77, 119–128 (2019).

    Google Scholar 

  79. Ferguglia, O., Palazzi, E. & Arnone, E. Elevation dependent change in ERA5 precipitation and its extremes. Clim. Dyn. 62, 8137–8153 (2024).

    Article  Google Scholar 

  80. Saavedra, F. A., Kampf, S. K., Fassnacht, S. R. & Sibold, J. S. Changes in Andes snow cover from MODIS data, 2000-2016. Cryosphere 12, 1027–1046 (2018).

    Article  Google Scholar 

  81. You, Q. et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth Sci. Rev. 210, 103349 (2020).

    Article  Google Scholar 

  82. Gao, Y. et al. Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. NPJ Clim. Atmos. Sci. 1, 19 (2018).

    Article  Google Scholar 

  83. Pepin, N. et al. An examination of temperature trends at high elevations across the Tibetan Plateau: the use of MODIS LST to understand patterns of elevation-dependent warming. J. Geophys. Res. 124, 5738–5756 (2019).

    Article  Google Scholar 

  84. Guo, D., Sun, J., Yang, K., Pepin, N. & Xu, Y. Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets. J. Geophys. Res. 124, 8511–8521 (2019).

    Article  Google Scholar 

  85. Li, B., Chen, Y. & Shi, X. Does elevation dependent warming exist in high mountain Asia? Environ. Res. Lett. 15, 024012 (2020).

    Article  Google Scholar 

  86. Rangwala, I., Sinsky, E. & Miller, J. R. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett. 8, 024040 (2013).

    Article  Google Scholar 

  87. Guo, D., Pepin, N., Yang, K., Sun, J. & Li, D. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau. Sci. Bull. 66, 1146–1150 (2021).

    Article  Google Scholar 

  88. Gao, L. et al. Evidence of elevation-dependent warming from the Chinese Tian Shan. Cryosphere 15, 5765–5783 (2021).

    Article  Google Scholar 

  89. Thakuri, S. et al. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 228, 261–269 (2019).

    Article  Google Scholar 

  90. Dimri, A. P., Palazzi, E. & Daloz, A. S. Elevation dependent precipitation and temperature changes over Indian Himalayan region. Clim. Dyn. 59, 1–21 (2022).

    Article  Google Scholar 

  91. International Centre for Integrated Mountain Development (ICIMOD). Water, Ice, Society, and Ecosystems in the Hindu Kush Himalaya: An Outlook (ICIMOD, 2023).

  92. Collier, E. & Immerzeel, W. W. High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya. J. Geophys. Res. 120, 9882–9896 (2015).

    Article  Google Scholar 

  93. Yang, K. et al. Impact of summer monsoon on the elevation-dependence of meteorological variables in the south of central Himalaya. Int. J. Climatol. 38, 1748–1759 (2018).

    Article  Google Scholar 

  94. Li, Y. et al. Contribution of Tibetan Plateau ecosystems to local and remote precipitation through moisture recycling. Glob. Change Biol. 29, 702–718 (2023).

    Article  CAS  Google Scholar 

  95. Guo, L. & Li, L. Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. Int. J. Climatol. 35, 1379–1393 (2015).

    Article  Google Scholar 

  96. Li, Z., Chen, Y., Li, Y. & Wang, Y. Declining snowfall fraction in the alpine regions, Central Asia. Sci. Rep. 10, 3476 (2020).

    Article  CAS  Google Scholar 

  97. Zhang, X. et al. Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. J. Hydrol. 606, 127457 (2022).

    Article  Google Scholar 

  98. Kang, S., Zhang, Y., Qian, Y. & Wang, H. A review of black carbon in snow and ice and its impact on the cryosphere. Earth Sci. Rev. 210, 103346 (2020).

    Article  CAS  Google Scholar 

  99. Xu, Y., Ramanathan, V. & Washington, W. M. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmos. Chem. Phys. 16, 1303–1315 (2016).

    Article  CAS  Google Scholar 

  100. Xiao, Y., Ke, C. Q., Shen, X., Cai, Y. & Li, H. What drives the decrease of glacier surface albedo in High Mountain Asia in the past two decades? Sci. Total Environ. 863, 160945 (2023).

    Article  CAS  Google Scholar 

  101. Tang, Z. et al. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 66, 2629–2645 (2020).

    Article  Google Scholar 

  102. Guo, Z. et al. Spatiotemporal variability in the glacier snowline altitude across High Mountain Asia and potential driving factors. Remote Sens. 13, 425 (2021).

    Article  Google Scholar 

  103. Wang, J. et al. Landsat Satellites observed dynamics of snowline altitude at the end of the melting season, Himalayas, 1991–2022. Remote Sens. 15, 2534 (2023).

    Article  Google Scholar 

  104. Mishra, N. B. & Mainali, K. P. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Sci. Total Environ. 587–588, 326–339 (2017).

    Article  Google Scholar 

  105. Bigi, A., Ghermandi, G. & Harrison, R. M. Analysis of the air pollution climate at a background site in the Po valley. J. Environ. Monit. 14, 552–563 (2012).

    Article  CAS  Google Scholar 

  106. Guariso, G. & Volta, M. Air Quality Integrated Assessment: A European Perspective http://www.polimi.it (Springer, 2017).

  107. Auer, I. et al. HISTALP — historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46 (2007).

    Article  Google Scholar 

  108. Ceppi, P., Scherrer, S. C., Fischer, A. M. & Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 32, 203–213 (2012).

    Article  Google Scholar 

  109. Gobiet, A. et al. Sci. Total Environ. 493, 1138–1151 (2014).

  110. Tudoroiu, M. et al. Negative elevation-dependent warming trend in the Eastern Alps. Environ. Res. Lett. 11, 044021 (2016).

    Article  Google Scholar 

  111. Zeng, Z. et al. Regional air pollution brightening reverses the greenhouse gases induced warming-elevation relationship. Geophys. Res. Lett. 42, 4563–4572 (2015).

    Article  CAS  Google Scholar 

  112. Manara, V., Bassi, M., Brunetti, M., Cagnazzi, B. & Maugeri, M. 1990–2016 surface solar radiation variability and trend over the Piedmont region (northwest Italy). Theor. Appl. Climatol. 136, 849–862 (2019).

    Article  Google Scholar 

  113. Gevorgyan, A., Melkonyan, H., Aleksanyan, T., Iritsyan, A. & Khalatyan, Y. An assessment of observed and projected temperature changes in Armenia. Arab. J. Geosci. 9, 27 (2016).

    Article  Google Scholar 

  114. Tashilova, A. A., Kesheva, L. A., Teunova, N. V. & Taubekova, Z. A. Analysis of temperature variability in the mountain regions of the North Caucasus in 1961–2013. Russ. Meteorol. Hydrol. 41, 601–609 (2016).

    Article  Google Scholar 

  115. Ashabokov, B. A., Beytuganov, M. N., Tashilova, A. A., Fedchenko, L. M. & Shapovalov, A. V. Changes of temperature and precipitation regimes in the south of European Russia in 1961-2015. MAUSAM 69, 553–562 (2018).

    Article  Google Scholar 

  116. Dallan, E., Borga, M., Zaramella, M. & Marra, F. Enhanced summer convection explains observed trends in extreme subdaily precipitation in the Eastern Italian Alps. Geophys. Res. Lett. https://doi.org/10.1029/2021GL096727 (2022).

    Article  Google Scholar 

  117. Bertoldi, G. et al. Diverging snowfall trends across months and elevation in the northeastern Italian Alps. Int. J. Climatol. 43, 2794–2819 (2023).

    Article  Google Scholar 

  118. Serquet, G., Marty, C., Dulex, J. P. & Rebetez, M. Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys. Res. Lett. https://doi.org/10.1029/2011GL046976 (2011).

    Article  Google Scholar 

  119. Diaz, H. F. & Eischeid, J. K. Disappearing ‘alpine tundra’ Köppen climatic type in the western United States. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031253 (2007).

    Article  Google Scholar 

  120. Oyler, J. W., Dobrowski, S. Z., Ballantyne, A. P., Klene, A. E. & Running, S. W. Artificial amplification of warming trends across the mountains of the western United States. Geophys. Res. Lett. 42, 153–161 (2015).

    Article  Google Scholar 

  121. McAfee, S. A., McCabe, G. J., Gray, S. T. & Pederson, G. T. Changing station coverage impacts temperature trends in the Upper Colorado River basin. Int. J. Climatol. 39, 1517–1538 (2019).

    Google Scholar 

  122. Williamson, S. N. et al. Evidence for elevation-dependent warming in the St. Elias Mountains, Yukon, Canada. J. Clim. 33, 3253–3269 (2020).

    Article  Google Scholar 

  123. Luce, C. H., Abatzoglou, J. T. & Holden, Z. A. The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 342, 1360–1364 (2013).

    Article  CAS  Google Scholar 

  124. Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. npj Clim. Atmos. Sci. 1, 2 (2018).

    Article  Google Scholar 

  125. Engstrom, C. B., Williamson, S. N., Gamon, J. A. & Quarmby, L. M. Seasonal development and radiative forcing of red snow algal blooms on two glaciers in British Columbia, Canada, summer 2020. Remote Sens. Environ. 280, 113164 (2022).

    Article  Google Scholar 

  126. Gabbi, J., Huss, M., Bauder, A., Cao, F. & Schwikowski, M. The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere 9, 1385–1400 (2015).

    Article  Google Scholar 

  127. Gleason, K. E., McConnell, J. R., Arienzo, M. M., Sexstone, G. A. & Rahimi, S. Black carbon dominated dust in recent radiative forcing on Rocky Mountain snowpacks. Environ. Res. Lett. 17, 054045 (2022).

    Article  Google Scholar 

  128. Deems, J. S., Painter, T. H., Barsugli, J. J., Belnap, J. & Udall, B. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology. Hydrol. Earth Syst. Sci. 17, 4401–4413 (2013).

    Article  Google Scholar 

  129. Niu, X., Tang, J., Chen, D., Wang, S. & Ou, T. Elevation-dependent warming over the Tibetan Plateau from an ensemble of CORDEX-EA regional climate simulations. J. Geophys. Res. 126, e2020JD033997 (2021).

    Article  Google Scholar 

  130. Yan, L., Liu, Z., Chen, G., Kutzbach, J. E. & Liu, X. Mechanisms of elevation-dependent warming over the Tibetan Plateau in quadrupled CO2 experiments. Clim. Change 135, 509–519 (2016).

    Article  Google Scholar 

  131. Minder, J. R., Letcher, T. W. & Liu, C. The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J. Clim. 31, 2093–2113 (2018).

    Article  Google Scholar 

  132. Kotlarski, S. et al. 21st century alpine climate change. Clim. Dyn. 60, 65–86 (2023).

    Article  Google Scholar 

  133. Urrutia, R. & Vuille, M. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD011021 (2009).

    Article  Google Scholar 

  134. Toledo, O., Palazzi, E., Cely Toro, I. M. & Mortarini, L. Comparison of elevation-dependent warming and its drivers in the tropical and subtropical Andes. Clim. Dyn. 58, 3057–3074 (2022).

    Article  Google Scholar 

  135. Zazulie, N., Rusticucci, M. & Raga, G. B. Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: Future projections for the twenty-first century. Clim. Dyn. 51, 2913–2925 (2018).

    Article  Google Scholar 

  136. Niu, X. et al. The performance of CORDEX-EA-II simulations in simulating seasonal temperature and elevation-dependent warming over the Tibetan Plateau. Clim. Dyn. 57, 1135–1153 (2021).

    Article  Google Scholar 

  137. Dimri, A. P., Bookhagen, B., Stoffel, M. & Yasunari, T. Himalayan Weather and Climate and Their Impact on the Environment (Springer, 2019).

  138. Kotlarski, S., Lüthi, D. & Schär, C. The elevation dependency of 21st century European climate change: an RCM ensemble perspective. Int. J. Climatol. 35, 3902–3920 (2015).

    Article  Google Scholar 

  139. Napoli, A., Parodi, A., von Hardenberg, J. & Pasquero, C. Altitudinal dependence of projected changes in occurrence of extreme events in the Great Alpine Region. Int. J. Climatol. 43, 5813–5829 (2023).

    Article  Google Scholar 

  140. Frei, P., Kotlarski, S., Liniger, M. A. & Schär, C. Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. Cryosphere 12, 1–24 (2018).

    Article  Google Scholar 

  141. Fang, H., Baiping, Z., Yonghui, Y., Yunhai, Z. & Yu, P. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arct. Antarct. Alp. Res. 43, 207–212 (2011).

    Article  Google Scholar 

  142. Pepin, N. C. & Seidel, D. J. A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res. D 110, 1–15 (2005).

    Article  Google Scholar 

  143. Magalhães, N., Evangelista, H., Condom, T., Rabatel, A. & Ginot, P. Amazonian biomass burning enhances tropical Andean glaciers melting. Sci. Rep. 9, 16914 (2019).

    Article  Google Scholar 

  144. Thornton, J. M., Pepin, N., Shahgedanova, M. & Adler, C. Coverage of in situ climatological observations in the world’s mountains. Front. Clim. https://doi.org/10.3389/fclim.2022.814181 (2022).

    Article  Google Scholar 

  145. Nitu, R. et al. Instruments and Observing Methods WMO Solid Precipitation Intercomparison Experiment (SPICE) (2012-2015). https://library.wmo.int/viewer/56317/download?file=iom_131_en_1.pdf&type=pdf&navigator=1 (2018).

  146. Rangwala, I. & Miller, J. R. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim. Change 114, 527–547 (2012).

    Article  Google Scholar 

  147. Pepin, N. et al. Proposal for the Unified High Elevation Observing Platform (UHOP) https://doi.org/10.48620/77051 (2024).

  148. Mo, Y., Pepin, N. & Lovell, H. Understanding temperature variations in mountainous regions: the relationship between satellite-derived land surface temperature and in situ near-surface air temperature. Remote Sens. Environ. 318, 114574 (2025).

    Article  Google Scholar 

  149. Williamson, S. N., Copland, L. & Hik, D. S. The accuracy of satellite-derived albedo for northern alpine and glaciated land covers. Polar Sci. 10, 262–269 (2016).

    Article  Google Scholar 

  150. Guidicelli, M., Aalstad, K., Treichler, D. & Salzmann, N. A combined data assimilation and deep learning approach for continuous spatio-temporal SWE reconstruction from sparse ground tracks. J. Hydrol. X 25, 100190 (2024).

    Google Scholar 

  151. Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019).

    Article  CAS  Google Scholar 

  152. Veettil, B. K. & Kamp, U. Global disappearance of tropical mountain glaciers: observations, causes, and challenges. Geosciences 9, 196 (2019).

    Article  Google Scholar 

  153. Xian, T. et al. Is Hadley cell expanding? Atmosphere 12, 1699 (2021).

    Article  Google Scholar 

  154. Keil, P., Schmidt, H., Stevens, B. & Bao, J. Variations of tropical lapse rates in climate models and their implications for upper-tropospheric warming. J. Clim. 34, 1–50 (2021).

    Article  Google Scholar 

  155. Bao, J., Stevens, B., Kluft, L. & Jiménez-de-la-Cuesta, D. Changes in the tropical lapse rate due to entrainment and their impact on climate sensitivity. Geophys. Res. Lett. 48, e2021GL094969 (2021).

    Article  Google Scholar 

  156. Schauwecker, S. et al. The freezing level in the tropical Andes, Peru: an indicator for present and future glacier extents. J. Geophys. Res. 122, 5172–5189 (2017).

    Article  Google Scholar 

  157. Los, S. O. et al. Sensitivity of a tropical montane cloud forest to climate change, present, past and future: Mt. Marsabit, N. Kenya. Quat. Sci. Rev. 218, 34–48 (2019).

    Article  Google Scholar 

  158. Ferguson, B. N. et al. Variation in cloud immersion, not precipitation, drives leaf trait plasticity and water relations in vascular epiphytes during an extreme drought. Am. J. Bot. 109, 550–563 (2022).

    Article  Google Scholar 

  159. Kageyama, M., Harrison, S. P. & Abe-Ouchi, A. The depression of tropical snowlines at the last glacial maximum: what can we learn from climate model experiments? Quat. Int. 138–139, 202–219 (2005).

    Article  Google Scholar 

  160. Palmer, P. I. et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 4, 254–270 (2023).

    Article  Google Scholar 

  161. Abermann, J. et al. Strong contrast in mass and energy balance between a coastal mountain glacier and the Greenland ice sheet. J. Glaciol. 65, 263–269 (2019).

    Article  Google Scholar 

  162. Bromwich, D. H., Nicolas, J. P. & Monaghan, A. J. An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Clim. 24, 4189–4209 (2011).

    Article  Google Scholar 

  163. Xie, A. et al. Surface warming from altitudinal and latitudinal amplification over Antarctica since the International Geophysical Year. Sci. Rep. 13, 9536 (2023).

    Article  CAS  Google Scholar 

  164. Palmer, M. D. et al. Exploring the drivers of global and local sea-level change over the 21st century and beyond. Earths Future 8, e2019EF001413 (2020).

    Article  Google Scholar 

  165. Kattel, D. B. et al. Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol. 113, 671–682 (2013).

    Article  Google Scholar 

  166. Pagès, M., Pepin, N. & Miró, J. R. Measurement and modelling of temperature cold pools in the Cerdanya valley (Pyrenees), Spain. Meteorol. Appl. 24, 290–302 (2017).

    Article  Google Scholar 

  167. Hiebl, J. & Schöner, W. Temperature inversions in Austria in a warming climate — changes in space and time. Meteorol. Z. 27, 309–323 (2018).

    Article  Google Scholar 

  168. Hartmann, D. L., Dygert, B. D., Blossey, P. N., Fu, Q. & Sokol, A. B. The vertical profile of radiative cooling and lapse rate in a warming climate. J. Clim. 35, 6253–6265 (2022).

    Article  Google Scholar 

  169. Hermann, M., Wernli, H. & Röthlisberger, M. Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes. Nat. Commun. 15, 7022 (2024).

    Article  CAS  Google Scholar 

  170. Collier, E. et al. The first ensemble of kilometer-scale simulations of a hydrological year over the third pole. Clim. Dyn. 62, 7501–7518 (2024).

    Article  Google Scholar 

  171. Soares, P. M. M. et al. The added value of km-scale simulations to describe temperature over complex orography: the CORDEX FPS-Convection multi-model ensemble runs over the Alps. Clim. Dyn. 62, 4491–4514 (2024).

    Article  Google Scholar 

  172. Thornton, J. M. et al. Toward a definition of essential mountain climate variables. One Earth 4, 805–827 (2021).

    Article  Google Scholar 

  173. Liu, X., Cheng, Z., Yan, L. & Yin, Z. Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Change 68, 164–174 (2009).

    Article  Google Scholar 

  174. Thornton, J. Inventory of in situ mountain observational infrastructure. GEO Mountains https://geomountains.org/resources-outputs/portals-inventories/ (2022).

  175. Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Article  Google Scholar 

  176. Dallan, E. et al. How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation? Hydrol. Earth Syst. Sci. 27, 1133–1149 (2023).

    Article  Google Scholar 

  177. Formetta, G., Marra, F., Dallan, E., Zaramella, M. & Borga, M. Differential orographic impact on sub-hourly, hourly, and daily extreme precipitation. Adv. Water Resour. 159, 104085 (2022).

    Article  Google Scholar 

  178. Sayre, R. et al. A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mt. Res. Dev. 38, 240–249 (2018).

    Article  Google Scholar 

  179. Luo, S., Yang, L. & Liu, J. Statistical characteristics analysis of global specific humidity vertical profile. In Proc. SPIE 2019 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems Vol. 11439, https://doi.org/10.1117/12.2544132 (SPIE, 2020).

  180. Zhang, H., Sun, M., Yao, X., Wang, Z. & Zhang, L. Spatial–temporal distribution of tropospheric specific humidity in the arid region of northwest China. Atmosphere 12, 349 (2021).

    Article  CAS  Google Scholar 

  181. Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2021).

  182. Letcher, T. W. & Minder, J. R. The simulated response of diurnal mountain winds to regionally enhanced warming caused by the snow albedo feedback. J. Atmos. Sci. 74, 49–67 (2017).

    Article  Google Scholar 

  183. Wilson, J. W. Notes on wind and its effects in Arctic-Alpine vegetation. J. Ecol. 47, 415–427 (1959).

    Article  Google Scholar 

  184. Acosta Navarro, J. C. et al. Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations. J. Clim. 30, 939–954 (2017).

    Article  Google Scholar 

  185. Lund, M. T., Myhre, G. & Samset, B. H. Anthropogenic aerosol forcing under the shared socioeconomic pathways. Atmos. Chem. Phys. 19, 13827–13839 (2019).

    Article  CAS  Google Scholar 

  186. Merikanto, J. et al. How Asian aerosols impact regional surface temperatures across the globe. Atmos. Chem. Phys. 21, 5865–5881 (2021).

    Article  CAS  Google Scholar 

  187. Baker, M. B. Cloud microphysics and climate. Science 276, 1072–1078 (1997).

    Article  CAS  Google Scholar 

  188. Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Clim. 25, 3736–3754 (2012).

    Article  Google Scholar 

  189. Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc. 93, 27–37 (2012).

    Article  Google Scholar 

  190. Pilinis, C., Seinfeld, J. H. & Grosjean, D. Water content of atmospheric aerosols. Atmos. Environ. 23, 1601–1606 (1989).

    Article  CAS  Google Scholar 

  191. Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).

    Article  Google Scholar 

  192. Haeberli, W. & Weingartner, R. In full transition: key impacts of vanishing mountain ice on water-security at local to global scales. Water Secur. 11, 100074 (2020).

    Article  Google Scholar 

  193. Li, L., Yang, S., Wang, Z., Zhu, X. & Tang, H. Evidence of warming and wetting climate over the Qinghai-Tibet plateau. Arct. Antarct. Alp. Res. 42, 449–457 (2010).

    Article  Google Scholar 

  194. Deng, H. & Ji, Z. Warming and wetting will continue over the Tibetan Plateau in the Shared Socioeconomic Pathways. PLoS ONE 18, e0289589 (2023).

    Article  CAS  Google Scholar 

  195. Moon, W., Kim, B.-M., Yang, G.-H. & Wettlaufer, J. S. Wavier jet streams driven by zonally asymmetric surface thermal forcing. Proc. Natl Acad. Sci. USA 119, e2200890119 (2022).

    Article  CAS  Google Scholar 

  196. Francis, J. A. & Vavrus, S. J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).

    Article  Google Scholar 

  197. Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).

    Article  Google Scholar 

  198. Lundquist, J. D. & Cayan, D. R. Surface temperature patterns in complex terrain: daily variations and long-term change in the central Sierra Nevada, California. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD007561 (2007).

    Article  Google Scholar 

  199. Francis, J. A. Why are Arctic linkages to extreme weather still up in the air? Bull. Am. Meteorol. Soc. 98, 2551–2557 (2017).

    Article  Google Scholar 

  200. Blackport, R. & Screen, J. A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 6, eaay2880 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Mountain Research Initiative for providing financial and logistical support for a workshop on Elevation Dependent Climate Change at the International Mountain Conference in Innsbruck in September 2022, at which the idea for this Review was conceived. E.P. was jointly funded by a Leverhulme Trust ECR fellowship, NERC grant NE/X004031/1 and the AgroClim-Huaraz project. A.N. was supported by Fondazione CARITRO (Cassa di Risparmio di Trento e Rovereto) within the project “Insight into the physical mechanisms underlying convection phenomena for a better understanding of its future evolution in the context of climate change in the Trentino region”. L.H. acknowledges the AgroClim Huarez project, funded by the Earth System Sciences Program of the Austrian Academy of Sciences (OEAW) and the European Union Horizon 2020 Marie Sklodowksa-Curie Action HIGHLANDS.3 project (grant no. 872328). D.Z. acknowledges support from the European Union — NextGenerationEU through the Italian National Recovery and Resilience Plan (PNRR), PRIN 2022 (grant no. 2022NEWP4J, CUP E53D23004450006); from the strategic partnerships ‘Space It Up!’, funded by the Italian Space Agency and the Ministry of University and Research (contract no. 2024-5-E.0-CUP  I53D24000060005); and from the iNEST initiative (Interconnected Nord-Est Innovation Ecosystem) funded by the European Union under NextGenerationEU (PNRR, Mission 4.2, Investment 1.5, project no. ECS 00000043).

Author information

Authors and Affiliations

Authors

Contributions

N.P. conceived the original idea, wrote large sections of the manuscript and coordinated the overall submission. M.A., J.K. and S.T. coordinated the writing of individual sections of the manuscript. S.N.W., L.H., A.N., S.T., E.P. and J.S. produced figures and/or tables. E.A. performed the analysis of trend dependence on elevation and produced corresponding figures and tables. All authors provided input to group discussions and/or comments on the manuscript draft.

Corresponding author

Correspondence to Nick Pepin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Giacomo Bertoldi, Bryan Mark and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EvK2CNR: https://www.evk2cnr.org/

GLORIA network: https://www.gloria.ac.at/network/general

Long-Term Ecological Research Network (LTER): https://lternet.edu/

Virtual Alpine Observatory: https://www.vao.bayern.de/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepin, N., Apple, M., Knowles, J. et al. Elevation-dependent climate change in mountain environments. Nat Rev Earth Environ 6, 772–788 (2025). https://doi.org/10.1038/s43017-025-00740-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00740-4

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene