Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Air emissions during destruction of PFAS-containing materials

Abstract

Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals used across numerous industrial and consumer applications. Their persistence and toxicological impacts necessitate their removal from the environment and their complete destruction; however, many PFAS destruction technologies release gas-phase and aerosol-phase fluorinated products of incomplete destruction (PIDs). In this Review, we discuss the PIDs released by PFAS destruction methods and approaches to categorize and measure them. Existing and emerging technologies use thermal, chemical, electrical or biological approaches to degrade PFASs, with varying degrees of success. Although many technologies achieve destruction and removal efficiencies of more than 99.99%, this metric does not account for the formation of airborne PIDs. Methods are being developed to measure PIDs in air emissions to protect exposed communities and facilitate the closure of fluorine mass balances. The choice of sampling and analytical methods depends on the polarity and volatility of the PIDs. Closing the mass balance is important because PIDs such as CF4 can have unintended global impacts, and potential localized risks from exposure to PIDs remain uncertain. Therefore, diverse analytical methods are needed to comprehensively characterize PIDs; such characterization is important to identify PFAS destruction technologies that minimize atmospheric emissions and their associated environmental and human health risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources, transport and exposure points of PFAS-derived PIDs.
Fig. 2: Strategies for managing PFASs.
Fig. 3: Classification of PFAS destruction technologies.
Fig. 4: Categorizing PIDs.

Similar content being viewed by others

References

  1. Kwiatkowski, C. F. et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 7, 532–543 (2020).

    Article  Google Scholar 

  2. Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020).

    Article  Google Scholar 

  3. Ng, C. et al. Addressing urgent questions for PFAS in the 21st century. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c03386 (2021).

    Article  Google Scholar 

  4. Zhang, Z., Sarkar, D., Biswas, J. K. & Datta, R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): a review. Bioresour. Technol. 344, 126223 (2022).

    Article  Google Scholar 

  5. Cousins, I. T. et al. The high persistence of PFAS is sufficient for their management as a chemical class. Environ. Sci. Process. Impacts 22, 2307–2312 (2020).

    Article  Google Scholar 

  6. Hopkins, Z. R., Sun, M., DeWitt, J. C. & Knappe, D. R. U. Recently detected drinking water contaminants: GenX and other per- and polyfluoroalkyl ether acids. J. AWWA 110, 13–28 (2018).

    Article  Google Scholar 

  7. Benskin, J. P., Li, B., Ikonomou, M. G., Grace, J. R. & Li, L. Y. Per- and polyfluoroalkyl substances in landfill leachate: patterns, time trends, and sources. Environ. Sci. Technol. 46, 11532–11540 (2012).

    Article  Google Scholar 

  8. Oliaei, F., Kriens, D., Weber, R. & Watson, A. PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environ. Sci. Pollut. Res. 20, 1977–1992 (2013).

    Article  Google Scholar 

  9. Human Health Toxicity Assessment for Perfluorooctanoic Acid (PFOA) and Related Salts (USEPA, 2024).

  10. Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) Vol. 135 (International Agency for Research on Cancer, 2025).

  11. Wanzek, T. et al. A multiple lines of evidence approach to demonstrate effectiveness of PFAS remediation technologies. Groundw. Monit. Remediation 44, 30–38 (2024).

    Article  Google Scholar 

  12. Smith, S. J. et al. The need to include a fluorine mass balance in the development of effective technologies for PFAS destruction. Environ. Sci. Technol. 58, 2587–2590 (2024).

    Article  Google Scholar 

  13. Houtz, E. F., Higgins, C. P., Field, J. A. & Sedlak, D. L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 47, 8187–8195 (2013).

    Article  Google Scholar 

  14. Liu, S. et al. Perfluoroalkyl substances (PFASs) in leachate, fly ash, and bottom ash from waste incineration plants: implications for the environmental release of PFAS. Sci. Total. Environ. 795, 148468 (2021).

    Article  Google Scholar 

  15. Björklund, S., Weidemann, E. & Jansson, S. Emission of per- and polyfluoroalkyl substances from a waste-to-energy plant—occurrence in ashes, treated process water, and first observation in flue gas. Environ. Sci. Technol. 57, 10089–10095 (2023).

    Article  Google Scholar 

  16. Block, C., Van Caneghem, J., Van Brecht, A., Wauters, G. & Vandecasteele, C. Incineration of hazardous waste: a sustainable process? Waste Biomass Valoriz. 6, 137–145 (2015).

    Article  Google Scholar 

  17. Winchell, L. J. et al. Fate of perfluoroalkyl and polyfluoroalkyl substances (PFAS) through two full-scale wastewater sludge incinerators. Water Environ. Res. 96, 11009 (2024).

    Article  Google Scholar 

  18. Weber, N. H. et al. Thermal mineralization of perfluorooctanesulfonic acid (PFOS) to HF, CO2, and SO2. Ind. Eng. Chem. Res. 62, 881–892 (2023).

    Article  Google Scholar 

  19. Lim, X. How to get rid of toxic ‘forever chemical’ pollution. Nature 640, 22–24 (2025).

    Article  Google Scholar 

  20. Longendyke, G. K., Katel, S. & Wang, Y. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. Environ. Sci. Process. Impacts 24, 196–208 (2022).

    Article  Google Scholar 

  21. Weber, N. H. et al. Thermal decomposition of perfluorooctanesulfonic acid (PFOS) in the presence of water vapor. Ind. Eng. Chem. Res. 61, 15146–15155 (2022).

    Article  Google Scholar 

  22. Kuepouo, G., Jelinek, N., Bell, L., Petrlik, J. & Grechko, V. Trials of Burning PFASs Containing Wastes in a Waste Incinerator and Cement Kiln Assessed against Stockholm Convention Objectives (IPEN, 2022); https://ipen.org/sites/default/files/documents/dioxin2022_pfas-australia_f.pdf.

  23. Watanabe, N., Takemine, S., Yamamoto, K., Haga, Y. & Takata, M. Residual organic fluorinated compounds from thermal treatment of PFOA, PFHxA and PFOS adsorbed onto granular activated carbon (GAC). J. Mater. Cycles Waste Manag. 18, 625–630 (2016).

    Article  Google Scholar 

  24. Austin, C. et al. Hydrothermal destruction and defluorination of trifluoroacetic acid (TFA). Environ. Sci. Technol. 58, 8076–8085 (2024).

    Article  Google Scholar 

  25. Austin, C. et al. Destruction and defluorination of PFAS matrix in continuous-flow supercritical water oxidation reactor: effect of operating temperature. Chemosphere 327, 138358 (2023).

    Article  Google Scholar 

  26. Cheng, J., Vecitis, C. D., Park, H., Mader, B. T. & Hoffmann, M. R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ. Sci. Technol. 42, 8057–8063 (2008).

    Article  Google Scholar 

  27. Stratton, G. R. et al. Plasma-based water treatment: efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. Environ. Sci. Technol. 51, 1643–1648 (2017).

    Article  Google Scholar 

  28. Park, H. et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: effects of ionic headgroup and chain length. J. Phys. Chem. A 113, 690–696 (2009).

    Article  Google Scholar 

  29. Nzeribe, B. N., Crimi, M., Mededovic Thagard, S. & Holsen, T. M. Physico-chemical processes for the treatment of per- and polyfluoroalkyl substances (PFAS): a review. Crit. Rev. Environ. Sci. Technol. 49, 866–915 (2019).

    Article  Google Scholar 

  30. Sühnholz, S., Gawel, A., Kopinke, F.-D. & Mackenzie, K. Evidence of heterogeneous degradation of PFOA by activated persulfate — FeS as adsorber and activator. Chem. Eng. J. 423, 130102 (2021).

    Article  Google Scholar 

  31. Yi, L. et al. Enhanced degradation of perfluorooctanoic acid by a genome shuffling-modified Pseudomonas parafulva YAB-1. Environ. Technol. 40, 3153–3161 (2018).

    Article  Google Scholar 

  32. Sikder, S., Toha, M. & Rahman, M. M. in Technical Landfills and Waste Management (eds Souabi, S. & Anouzla, A.) 169–188 (Springer, 2024).

  33. Thermal oxidizer performance test report. Chemours https://www.chemours.com/en/-/media/files/corporate/fayetteville-works/2020-03-thermal-oxidizer-test-report.pdf (2020).

  34. SW-846 Compendium: Incineration https://www.epa.gov/sites/default/files/2015-10/documents/chap13.pdf (USEPA, 1986).

  35. Weber, N. H. et al. Formation of products of incomplete destruction (PID) from the thermal oxidative decomposition of perfluorooctanoic acid (PFOA): measurement, modeling, and reaction pathways. J. Phys. Chem. A 128, 5362–5373 (2024).

    Article  Google Scholar 

  36. Alinezhad, A. et al. Mechanistic investigations of thermal decomposition of perfluoroalkyl ether carboxylic acids and short-chain perfluoroalkyl carboxylic acids. Environ. Sci. Technol. 57, 8796–8807 (2023).

    Article  Google Scholar 

  37. Mattila, J. M. et al. Characterizing volatile emissions and combustion byproducts from aqueous film-forming foams using online chemical ionization mass spectrometry. Environ. Sci. Technol. 58, 3942–3952 (2024).

    Article  Google Scholar 

  38. Shields, E. P. et al. Pilot-scale thermal destruction of per- and polyfluoroalkyl substances in a legacy aqueous film forming foam. ACS ES&T Eng. 3, 1308–1317 (2023).

    Article  Google Scholar 

  39. Galloway, J. E. et al. Evidence of air dispersion: HFPO–DA and PFOA in Ohio and West Virginia surface water and soil near a fluoropolymer production facility. Environ. Sci. Technol. 54, 7175–7184 (2020).

    Article  Google Scholar 

  40. D’Ambro, E. L. et al. Characterizing the air emissions, transport, and deposition of per- and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environ. Sci. Technol. 55, 862–870 (2021).

    Article  Google Scholar 

  41. Zhou, J. et al. PFOS dominates PFAS composition in ambient fine particulate matter (PM2.5) collected across North Carolina nearly 20 years after the end of its US production. Environ. Sci. Process. Impacts 23, 580–587 (2021).

    Article  Google Scholar 

  42. Abou-Khalil, C., Sarkar, D., Braykaa, P. & Boufadel, M. C. Mobilization of per- and polyfluoroalkyl substances (PFAS) in soils: a review. Curr. Pollut. Rep. 8, 422–444 (2022).

    Article  Google Scholar 

  43. Boyer, T. H. et al. Anion exchange resin removal of per- and polyfluoroalkyl substances (PFAS) from impacted water: a critical review. Water Res. 200, 117244 (2021).

    Article  Google Scholar 

  44. Sleep, J. A. & Juhasz, A. L. A review of immobilisation-based remediation of per- and poly-fluoroalkyl substances (PFAS) in soils. Curr. Pollut. Rep. 7, 524–539 (2021).

    Article  Google Scholar 

  45. Liu, C. et al. Evaluating the efficiency of nanofiltration and reverse osmosis membrane processes for the removal of per- and polyfluoroalkyl substances from water: a critical review. Sep. Purif. Technol. 302, 122161 (2022).

    Article  Google Scholar 

  46. Wallace, J. S. et al. Burning questions: current practices and critical gaps in evaluating removal of per- and polyfluoroalkyl substances (PFAS) during pyrolysis treatments of biosolids. J. Hazard. Mater. Lett. 4, 100079 (2023).

    Article  Google Scholar 

  47. Appleman, T. D., Dickenson, E. R. V., Bellona, C. & Higgins, C. P. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. J. Hazard. Mater. 260, 740–746 (2013).

    Article  Google Scholar 

  48. Ochoa-Herrera, V. & Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 72, 1588–1593 (2008).

    Article  Google Scholar 

  49. Zeng, C. et al. Removing per- and polyfluoroalkyl substances from groundwaters using activated carbon and ion exchange resin packed columns. AWWA Water Sci. 2, e1172 (2020).

    Article  Google Scholar 

  50. Kothawala, D. N., Köhler, S. J., Östlund, A., Wiberg, K. & Ahrens, L. Influence of dissolved organic matter concentration and composition on the removal efficiency of perfluoroalkyl substances (PFASs) during drinking water treatment. Water Res. 121, 320–328 (2017).

    Article  Google Scholar 

  51. Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S. & Leckie, J. O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ. Sci. Technol. 40, 7343–7349 (2006).

    Article  Google Scholar 

  52. Smith, S. J., Wiberg, K., McCleaf, P. & Ahrens, L. Pilot-scale continuous foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. ACS ES&T Water 2, 841–851 (2022).

    Article  Google Scholar 

  53. Vecitis, C. D., Park, H., Cheng, J., Mader, B. T. & Hoffmann, M. R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. China 3, 129–151 (2009).

    Article  Google Scholar 

  54. Burns, D. J., Stevenson, P. & Murphy, P. J. C. PFAS removal from groundwaters using surface-active foam fractionation. Remediation J. 31, 19–33 (2021).

    Article  Google Scholar 

  55. McCleaf, P. et al. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 120, 77–87 (2017).

    Article  Google Scholar 

  56. Saeidi, N., Harnisch, F., Presser, V., Kopinke, F.-D. & Georgi, A. Electrosorption of organic compounds: state of the art, challenges, performance, and perspectives. Chem. Eng. J. 471, 144354 (2023).

    Article  Google Scholar 

  57. Vu, C. T. & Wu, T. Recent progress in adsorptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater. Crit. Rev. Environ. Sci. Technol. 52, 90–129 (2022).

    Article  Google Scholar 

  58. Lin, Z.-W., Wang, J., Dyakiv, Y., Helbling, D. E. & Dichtel, W. R. Structural features of styrene-functionalized cyclodextrin polymers that promote the adsorption of perfluoroalkyl acids in water. ACS Appl. Mater. Interfaces 16, 28409–28422 (2024).

    Article  Google Scholar 

  59. Hale, S. E. et al. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Chemosphere 171, 9–18 (2017).

    Article  Google Scholar 

  60. Divine, C. et al. Field demonstration of in situ stabilization (ISS) of per- and polyfluoroalkyl substances in soil with remBind®. J. Hazard. Mater. 499, 140127 (2025).

    Article  Google Scholar 

  61. Grimison, C. et al. The efficacy of soil washing for the remediation of per- and poly-fluoroalkyl substances (PFASs) in the field. J. Hazard. Mater. 445, 130441 (2023).

    Article  Google Scholar 

  62. Høisæter, Å et al. Excavated vs novel in situ soil washing as a remediation strategy for sandy soils impacted with per- and polyfluoroalkyl substances from aqueous film forming foams. Sci. Total. Environ. 794, 148763 (2021).

    Article  Google Scholar 

  63. Khan, M. Y., So, S. & da Silva, G. Decomposition kinetics of perfluorinated sulfonic acids. Chemosphere 238, 124615 (2020).

    Article  Google Scholar 

  64. Ram, H., DePompa, C. M. & Westmoreland, P. R. Thermochemistry of gas-phase thermal oxidation of C2 to C8 perfluorinated sulfonic acids with extrapolation to C16. J. Phys. Chem. A 128, 3387–3395 (2024).

    Article  Google Scholar 

  65. Ram, H., Sadej, T. P., Murphy, C. C., Mallo, T. J. & Westmoreland, P. R. Thermochemistry of species in gas-phase thermal oxidation of C2 to C8 perfluorinated carboxylic acids. J. Phys. Chem. A 128, 1313–1326 (2024).

    Article  Google Scholar 

  66. Altarawneh, M., Almatarneh, M. H. & Dlugogorski, B. Z. Thermal decomposition of perfluorinated carboxylic acids: kinetic model and theoretical requirements for PFAS incineration. Chemosphere 286, 131685 (2022).

    Article  Google Scholar 

  67. Blotevogel, J., Giraud, R. J. & Rappé, A. K. Incinerability of PFOA and HFPO-DA: mechanisms, kinetics, and thermal stability ranking. Chem. Eng. J. 457, 141235 (2023).

    Article  Google Scholar 

  68. Bentel, M. J. et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–3728 (2019).

    Article  Google Scholar 

  69. Blotevogel, J., Giraud, R. J. & Borch, T. Reductive defluorination of perfluorooctanoic acid by zero-valent iron and zinc: a DFT-based kinetic model. Chem. Eng. J. 335, 248–254 (2018).

    Article  Google Scholar 

  70. Blotevogel, J., Joyce, J. P., Hill, O. L. & Rappé, A. K. Headgroup dependence and kinetic bottlenecks of gas-phase thermal PFAS destruction. ACS ES&T Eng. https://doi.org/10.1021/acsestengg.4c00726 (2025).

    Article  Google Scholar 

  71. Weber, N. H. et al. Thermal decomposition of PFOA: influence of reactor and reaction conditions on product formation. Chem. Eng. Sci. 278, 118924 (2023).

    Article  Google Scholar 

  72. Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article  Google Scholar 

  73. LaZerte, J. D., Hals, L. J., Reid, T. S. & Smith, G. H. Pyrolyses of the salts of the perfluoro carboxylic acids. J. Am. Chem. Soc. 75, 4525–4528 (1953).

    Article  Google Scholar 

  74. Weber, N. H. et al. Modeling and experimental study on the thermal decomposition of perfluorooctanesulfonic acid (PFOS) in an α-alumina reactor. Ind. Eng. Chem. Res. 61, 5453–5463 (2022).

    Article  Google Scholar 

  75. Weber, N. H. et al. Influence of reactor composition on the thermal decomposition of perfluorooctanesulfonic acid (PFOS). J. Hazard. Mater. 461, 132665 (2024).

    Article  Google Scholar 

  76. Yao, B. et al. The first quantitative investigation of compounds generated from PFAS, PFAS-containing aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes. J. Hazard. Mater. 436, 129313 (2022).

    Article  Google Scholar 

  77. Xu, M.-G. et al. Direct measurement of fluorocarbon radicals in the thermal destruction of perfluorohexanoic acid using photoionization mass spectrometry. Sci. Adv. 11, 3363 (2025).

    Article  Google Scholar 

  78. Wang, F., Shih, K., Lu, X. & Liu, C. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge. Environ. Sci. Technol. 47, 2621–2627 (2013).

    Article  Google Scholar 

  79. Wang, F., Lu, X., Li, X. & Shih, K. Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. Environ. Sci. Technol. 49, 5672–5680 (2015).

    Article  Google Scholar 

  80. Abou-Khalil, C. et al. Enhancing the thermal mineralization of perfluorooctanesulfonate on granular activated carbon using alkali and alkaline-earth metal additives. Environ. Sci. Technol. 58, 11162–11174 (2024).

    Article  Google Scholar 

  81. Wang, F., Lu, X., Shih, K. & Liu, C. Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions. J. Hazard. Mater. 192, 1067–1071 (2011).

    Article  Google Scholar 

  82. Knappe, D. R. U., Dagois, G. & DeWolfe, J. R. Effect of calcium on thermal regeneration of GAC. J. AWWA 84, 73–80 (1992).

    Article  Google Scholar 

  83. 40 CFR § 63.1206 – When and How Must You Comply with the Standards and Operating Requirements? Title 40, Chapter I, Subchapter C, Part 63, Subpart EEE (USEFA, 2025).

  84. 40 CFR § 264.343 – Incinerators: Performance Standards. Title 40, Chapter I, Subchapter I, Part 264, Subpart O (USEPA, 2025).

  85. Interim Guidance on the Destruction and Disposal of Perfluoroalkyl and Polyfluoroalkyl Substances and Materials Containing Perfluoroalkyl and Polyfluoroalkyl Substances—Version 2 (2024) (USEPA, 2024).

  86. Troxler, W. et al. PFAS Destruction by a Hazardous Waste Incinerator: Testing Results (USEPA, 2025).

  87. Weber, N. H. et al. Kinetics of decomposition of PFOS relevant to thermal desorption remediation of soils. Ind. Eng. Chem. Res. 60, 9080–9087 (2021).

    Article  Google Scholar 

  88. Air Pollution Control Technology Fact Sheet. EPA-CICA Fact Sheet EPA-452/F-03-022 (USEPA, 2020).

  89. Jordens, A., Makoudi, M., Saadaoui, H. & Haemers, J. Remediation of dioxin-contaminated soils through thermal desorption and vapor management via thermal oxidizer at Bien Hoa airbase, Vietnam. Environ. Eng. Manag. J. 22, 1735–1744 (2023).

    Article  Google Scholar 

  90. Shields, E. P., Roberson, W. R., Ryan, J. V. & Jackson, S. R. The use of air pollution controls to reduce the gas-phase emissions of per- and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environ. Sci. Technol. Lett. 12, 768–773 (2025).

    Article  Google Scholar 

  91. Huber, S., Moe, M. K., Schmidbauer, N., Hansen, G. H. & Herzke, D. Emissions from Incineration of Fluoropolymer Materials. A Literature Survey (Norwegian Institute for Air Research, 2009); https://nilu.com/wp-content/uploads/dnn/12-2009-dhe-nyutgave4.pdf.

  92. Bamdad, H., Papari, S., Moreside, E. & Berruti, F. High-temperature pyrolysis for elimination of per- and polyfluoroalkyl substances (PFAS) from biosolids. Processes 10, 2187 (2022).

    Article  Google Scholar 

  93. Sørmo, E. et al. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. J. Hazard. Mater. 454, 131447 (2023).

    Article  Google Scholar 

  94. McNamara, P. et al. Pyrolysis transports, and transforms, PFAS from biosolids to py-liquid. Environ. Sci. 9, 386–395 (2023).

    Google Scholar 

  95. Mayerberger, E. et al. Destruction of PFAS during thermal reactivation of granular activated carbon used in potable water treatment. Remediation J. 35, 70030 (2025).

    Article  Google Scholar 

  96. Watanabe, N., Takata, M., Takemine, S. & Yamamoto, K. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere. Environ. Sci. Pollut. Res. 25, 7200–7205 (2015).

    Article  Google Scholar 

  97. Xiao, F. et al. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon. Environ. Sci. Technol. Lett. 7, 343–350 (2020).

    Article  Google Scholar 

  98. Hao, S. et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam. Environ. Sci. Technol. 55, 3283–3295 (2021).

    Article  Google Scholar 

  99. Wen, J., Neha, S., Biller, P., Kristensen, K. & Vergeynst, L. Detection of volatile hydroperfluoroalkanes during hydrothermal liquefaction of perfluoroalkyl carboxylic acids at circumneutral pH. J. Hazard. Mater. 476, 134955 (2024).

    Article  Google Scholar 

  100. Rosansky, S. et al. Field demonstration of PFAS destruction in various alcohol-resistant AFFFs using supercritical water oxidation (SCWO). ACS ES&T Water 4, 4486–4496 (2024).

    Article  Google Scholar 

  101. Ross, I. et al. A review of emerging technologies for remediation of PFASs. Remediation J. 28, 101–126 (2018).

    Article  Google Scholar 

  102. Hori, H. et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 39, 2383–2388 (2005).

    Article  Google Scholar 

  103. Zhang, C., Hopkins, Z. R., McCord, J., Strynar, M. J. & Knappe, D. R. U. Fate of per- and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water. Environ. Sci. Technol. Lett. 6, 662–668 (2019).

    Article  Google Scholar 

  104. Qian, L., Kopinke, F.-D., Scherzer, T., Griebel, J. & Georgi, A. Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites. Chem. Eng. J. 429, 132500 (2022).

    Article  Google Scholar 

  105. Cao, C.-S. et al. A review on the advancement in photocatalytic degradation of poly/perfluoroalkyl substances in water: insights into the mechanisms and structure-function relationship. Sci. Total Environ. 946, 174137 (2024).

    Article  Google Scholar 

  106. Shi, L. et al. A review of electrooxidation systems treatment of poly-fluoroalkyl substances (PFAS): electrooxidation degradation mechanisms and electrode materials. Environ. Sci. Pollut. Res. 31, 42593–42613 (2024).

    Article  Google Scholar 

  107. Park, H. et al. Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm. Photochem. Photobiol. Sci. 10, 1945–1953 (2011).

    Article  Google Scholar 

  108. Cui, J., Gao, P. & Deng, Y. Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): a critical review. Environ. Sci. Technol. 54, 3752–3766 (2020).

    Article  Google Scholar 

  109. O’Connor, N. et al. Forever no more: complete mineralization of per- and polyfluoroalkyl substances (PFAS) using an optimized UV/sulfite/iodide system. Sci. Total Environ. 888, 164137 (2023).

    Article  Google Scholar 

  110. Blotevogel, J., Thagard, S. M. & Mahendra, S. Scaling up water treatment technologies for PFAS destruction: current status and potential for fit-for-purpose application. Curr. Opin. Chem. Eng. 41, 100944 (2023).

    Article  Google Scholar 

  111. Singh, R. K. et al. Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. Environ. Sci. Technol. 53, 2731–2738 (2019).

    Article  Google Scholar 

  112. Price, G. J., Ashokkumar, M., Hodnett, M., Zequiri, B. & Grieser, F. Acoustic emission from cavitating solutions: implications for the mechanisms of sonochemical reactions. J. Phys. Chem. B 109, 17799–17801 (2005).

    Article  Google Scholar 

  113. Moriwaki, H. et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ. Sci. Technol. 39, 3388–3392 (2005).

    Article  Google Scholar 

  114. Zhao, Y. et al. Formation of volatile chlorinated and brominated products during low temperature thermal decomposition of the representative PFAS perfluorohexane sulfonate (PFHxS) in the presence of NaCl and NaBr. Environ. Pollut. 348, 123782 (2024).

    Article  Google Scholar 

  115. Vargette, L. D. S. et al. Prospects of complete mineralization of per- and polyfluoroalkyl substances by thermal destruction methods. Curr. Opin. Chem. Eng. 42, 100954 (2023).

    Article  Google Scholar 

  116. DiStefano, R., Feliciano, T., Mimna, R. A., Redding, A. M. & Matthis, J. Thermal destruction of PFAS during full-scale reactivation of PFAS-laden granular activated carbon. Remediation J. 32, 231–238 (2022).

    Article  Google Scholar 

  117. Other Test Method 45 (OTM-45). Measurement of Per- and Polyfluorinated Alkyl Substances from Stationary Sources (USEPA, 2021).

  118. Research on per- and polyfluoroalkyl substances (PFAS). USEPA https://www.epa.gov/chemical-research/research-and-polyfluoroalkyl-substances-pfas (2025).

  119. McDonough, J. T. et al. Validation of supercritical water oxidation to destroy perfluoroalkyl acids. Remediation J. 32, 75–90 (2022).

    Article  Google Scholar 

  120. Wickersham, L. C. et al. Characterization of PFAS air emissions from thermal application of fluoropolymer dispersions on fabrics. J. Air Waste Manag. Assoc. 73, 533–552 (2023).

    Article  Google Scholar 

  121. Thoma, E. D. et al. Pyrolysis processing of PFAS-impacted biosolids, a pilot study. J. Air Waste Manag. Assoc. 72, 309–318 (2022).

    Article  Google Scholar 

  122. Dolatabad, A. A. et al. Thermal degradation of long-chain fluorinated greenhouse gases: stability, byproducts, and remediation approaches. ACS ES&T Eng. 5, 389–401 (2025).

    Article  Google Scholar 

  123. Dreyer, A. & Ebinghaus, R. Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany. Atmos. Environ. 43, 1527–1535 (2009).

    Article  Google Scholar 

  124. Saawarn, B., Mahanty, B., Hait, S. & Hussain, S. Sources, occurrence, and treatment techniques of per- and polyfluoroalkyl substances in aqueous matrices: a comprehensive review. Environ. Res. 214, 114004 (2022).

    Article  Google Scholar 

  125. Gillespie, A. J. R. et al. US EPA advances in PFAS air science. USEPA https://cleanairact.org/wp-content/uploads/2023/09/2_Gillespie_AAPCA-Fall-2023-PFAS-in-air.pdf (2023).

  126. Ryan, J. V. & Gullett, B. Final test report: PFAS emissions measurement methods development and emissions characterization study at National Response Corporation Alaska, LLC AFFF Contaminated Soil Thermal Treatment Facility. USEPA https://apps.dtic.mil/sti/pdfs/AD1134823.pdf (2019).

  127. Cheng, L. et al. Historical blood serum samples from Wilmington, North Carolina: the importance of ultrashort-chain per- and polyfluoroalkyl substances. Environ. Sci. Technol. 59, 23125–23135 (2025).

    Article  Google Scholar 

  128. Dunder, T. A., Geyer, T. J., Kinner, L. L. & Plummer, G. M. in Optical Instrumentation for Gas Emissions Monitoring and Atmospheric Measurements Vol. 2366 (eds Leonelli, J. et al.) 174 (SPIE, 1995).

  129. Method 320 – Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy (USEPA, 2019).

  130. ASTM D6348-12(2020) Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (ASTM, 2020).

  131. Baker, T. J. et al. An infrared spectral database for gas-phase quantitation of volatile per- and polyfluoroalkyl substances (PFAS). J. Quant. Spectrosc. Radiat. Transf. 295, 108420 (2023).

    Article  Google Scholar 

  132. Miser, C. S., Davis, W. R., McNesby, K. L., Hoke, S. H. & Leonnig, M. K. Measurement of carbonyl fluoride, hydrogen fluoride, and other combustion byproducts during fire suppression testing by Fourier transform infrared spectroscopy. In Proc. Halon Options Technical Working Conference 190–203 (NIST, 1998).

  133. Li, S., Lyons-Hart, J., Banyasz, J. & Shafer, K. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80, 1809–1817 (2001).

    Article  Google Scholar 

  134. Blommaerts, N. et al. Ultrafast screening of commercial sorbent materials for VOC adsorption using real-time FTIR spectroscopy. Sep. Purif. Technol. 207, 284–290 (2018).

    Article  Google Scholar 

  135. Telegeiev, I. et al. In situ FTIR reactor for monitoring gas-phase products during a (photo)catalytic reaction in the liquid phase. Anal. Chem. 90, 14586–14592 (2018).

    Article  Google Scholar 

  136. Hauchecorne, B., Tytgat, T., Terrens, D., Vanpachtenbeke, F. & Lenaerts, S. Validation of a newly developed FTIR in situ reactor: real time study of photocatalytic degradation of nitric oxide. Infrared Phys. Technol. 53, 469–473 (2010).

    Article  Google Scholar 

  137. Stec, A. A. et al. Quantification of fire gases by FTIR: experimental characterisation of calibration systems. Fire Saf. J. 46, 225–233 (2011).

    Article  Google Scholar 

  138. de Gouw, J. A., Howard, C. J., Custer, T. G., Baker, B. M. & Fall, R. Proton-transfer chemical-ionization mass spectrometry allows real-time analysis of volatile organic compounds released from cutting and drying of crops. Environ. Sci. Technol. 34, 2640–2648 (2000).

    Article  Google Scholar 

  139. Lee, B. H. et al. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48, 6309–6317 (2014).

    Article  Google Scholar 

  140. Zhang, W. & Zhang, H. Secondary ion chemistry mediated by ozone and acidic organic molecules in iodide-adduct chemical ionization mass spectrometry. Anal. Chem. 93, 8595–8602 (2021).

    Article  Google Scholar 

  141. Blake, R. S., Wyche, K. P., Ellis, A. M. & Monks, P. S. Chemical ionization reaction time-of-flight mass spectrometry: multi-reagent analysis for determination of trace gas composition. Int. J. Mass Spectrom. 254, 85–93 (2006).

    Article  Google Scholar 

  142. Yuan, B. et al. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere. Atmos. Meas. Tech. 9, 2735–2752 (2016).

    Article  Google Scholar 

  143. Munson, M. S. B. & Field, F. H. Chemical ionization mass spectrometry. I. General introduction. J. Am. Chem. Soc. 88, 2621–2630 (1966).

    Article  Google Scholar 

  144. Munson, B. Chemical ionization mass spectrometry: theory and applications. In Encyclopedia of Analytical Chemistry (eds Meyers, R. A. & Sparkman, O. D.) (Wiley, 2006).

  145. Rewerts, J. N., Morré, J. T., Massey Simonich, S. L. & Field, J. A. In-vial extraction large volume gas chromatography mass spectrometry for analysis of volatile PFASs on papers and textiles. Environ. Sci. Technol. 52, 10609–10616 (2018).

    Article  Google Scholar 

  146. Isemura, T., Kakita, R., Tamaoki, A. & Yonemori, S. Chemical ionization mass spectrometry of hydrofluorocarbons, hydrofluorocarbon ethers and perfluoroalkenes. J. Fluor. Chem. 80, 81–85 (1996).

    Article  Google Scholar 

  147. Riedel, T. P., Lang, J. R., Strynar, M. J., Lindstrom, A. B. & Offenberg, J. H. Gas-phase detection of fluorotelomer alcohols and other oxygenated per- and polyfluoroalkyl substances by chemical ionization mass spectrometry. Environ. Sci. Technol. Lett. 6, 289–293 (2019).

    Article  Google Scholar 

  148. Riedel, T. P. et al. Low temperature thermal treatment of gas-phase fluorotelomer alcohols by calcium oxide. Chemosphere 272, 129859 (2021).

    Article  Google Scholar 

  149. Bowers, B. B., Thornton, J. A. & Sullivan, R. C. Evaluation of iodide chemical ionization mass spectrometry for gas and aerosol-phase per- and polyfluoroalkyl substances (PFAS) analysis. Environ. Sci. Process. Impacts 25, 277–287 (2023).

    Article  Google Scholar 

  150. Folkerson, A. P., Schneider, S. R., Abbatt, J. P. D. & Mabury, S. A. Avoiding regrettable replacements: can the introduction of novel functional groups move pfas from recalcitrant to reactive? Environ. Sci. Technol. 57, 17032–17041 (2023).

    Article  Google Scholar 

  151. Veres, P. et al. Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. Int. J. Mass Spectrom. 274, 48–55 (2008).

    Article  Google Scholar 

  152. Young, C. J., Joudan, S., Tao, Y., Wentzell, J. J. B. & Liggio, J. High time resolution ambient observations of gas-phase perfluoroalkyl carboxylic acids: implications for atmospheric sources. Environ. Sci. Technol. Lett. https://doi.org/10.1021/acs.estlett.4c00897 (2024).

    Article  Google Scholar 

  153. Huey, L. G., Hanson, D. R. & Howard, C. J. Reactions of SF6 and I with atmospheric trace gases. J. Phys. Chem. 99, 5001–5008 (1995).

    Article  Google Scholar 

  154. Gkatzelis, G. I. et al. Identifying volatile chemical product tracer compounds in U.S. cities. Environ. Sci. Technol. 55, 188–199 (2020).

    Article  Google Scholar 

  155. Yang, Z. et al. Review and prospect on portable mass spectrometer for recent applications. Vacuum 199, 110889 (2022).

    Article  Google Scholar 

  156. Snyder, D. T., Pulliam, C. J., Ouyang, Z. & Cooks, R. G. Miniature and fieldable mass spectrometers: recent advances. Anal. Chem. 88, 2–29 (2016).

    Article  Google Scholar 

  157. Feider, C. L., Krieger, A., DeHoog, R. J. & Eberlin, L. S. Ambient ionization mass spectrometry: recent developments and applications. Anal. Chem. 91, 4266–4290 (2019).

    Article  Google Scholar 

  158. Kuo, T.-H., Dutkiewicz, E. P., Pei, J. & Hsu, C.-C. Ambient ionization mass spectrometry today and tomorrow: embracing challenges and opportunities. Anal. Chem. 92, 2353–2363 (2020).

    Article  Google Scholar 

  159. Chen, R. et al. Recent applications of ambient ionization mass spectrometry in environmental analysis. Trends Environ. Anal. Chem. 15, 1–11 (2017).

    Article  Google Scholar 

  160. Brown, H. M., McDaniel, T. J., Fedick, P. W. & Mulligan, C. C. The current role of mass spectrometry in forensics and future prospects. Anal. Methods 12, 3974–3997 (2020).

    Article  Google Scholar 

  161. Takáts, Z., Wiseman, J. M., Gologan, B. & Cooks, R. G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473 (2004).

    Article  Google Scholar 

  162. Cody, R. B., Laramée, J. A. & Durst, H. D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297–2302 (2005).

    Article  Google Scholar 

  163. West, C. P., Brown, H. M. & Fedick, P. W. Molecular characterization of the thermal degradation of per- and polyfluoroalkyl substances in aqueous film-forming foams via temperature-programmed thermal desorption–pyrolysis–direct analysis in real time–mass spectrometry. Environ. Sci. Technol. Lett. 10, 308–315 (2023).

    Article  Google Scholar 

  164. Heffernan, D. et al. Screening of volatile organic compounds (VOCs) from liquid fungal cultures using ambient mass spectrometry. Anal. Bioanal. Chem. 415, 4615–4627 (2023).

    Article  Google Scholar 

  165. Dryahina, K., Polášek, M., Jašík, J., Sovová, K. & Španěl, P. Ion chemistry in dielectric barrier discharge ionization: recent advances in direct gas phase analyses. Mass Spectrom. Rev. https://doi.org/10.1002/mas.21914 (2024).

    Article  Google Scholar 

  166. Martínez-Jarquín, S. & Winkler, R. Low-temperature plasma (LTP) jets for mass spectrometry (MS): ion processes, instrumental set-ups, and application examples. Trends Anal. Chem. 89, 133–145 (2017).

    Article  Google Scholar 

  167. Gong, X., Shi, S. & Gamez, G. Real-time quantitative analysis of valproic acid in exhaled breath by low temperature plasma ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 678–687 (2017).

    Article  Google Scholar 

  168. Li, D., Tian, Y., Zhao, Z., Li, W. & Duan, Y. Ambient ionization and direct identification of volatile organic compounds with microwave-induced plasma mass spectrometry. J. Mass Spectrom. 50, 388–395 (2015).

    Article  Google Scholar 

  169. Wu, C., Siems, W. F. & Hill, H. H. Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs. Anal. Chem. 72, 396–403 (2000).

    Article  Google Scholar 

  170. Steiner, W. E., Clowers, B. H., Haigh, P. E. & Hill, H. H. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry. Anal. Chem. 75, 6068–6076 (2003).

    Article  Google Scholar 

  171. Tam, M. & Hill, H. H. Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal. Chem. 76, 2741–2747 (2004).

    Article  Google Scholar 

  172. Basler, S. et al. Molecular breath profile of acute COPD exacerbations. J. Breath Res. 19, 016011 (2025).

    Article  Google Scholar 

  173. Arnold, K. et al. Early detection of bacterial pneumonia by characteristic induced odor signatures. BMC Infect. Dis. 24, 1467 (2024).

    Article  Google Scholar 

  174. Singh, K. D. et al. Translating secondary electrospray ionization–high-resolution mass spectrometry to the clinical environment. J. Breath Res. 12, 027113 (2018).

    Article  Google Scholar 

  175. Martínez-Lozano, P., Rus, J., Fernández de la Mora, G., Hernández, M. & Fernández de la Mora, J. Secondary electrospray ionization (SESI) of ambient vapors for explosive detection at concentrations below parts per trillion. J. Am. Soc. Mass Spectrom. 20, 287–294 (2009).

    Article  Google Scholar 

  176. Liu, W. et al. Tracking indoor volatile organic compounds with online mass spectrometry. Trends Anal. Chem. 171, 117514 (2024).

    Article  Google Scholar 

  177. Liu, S. et al. Ozone oxidation of the flame retardant BDE-209: kinetics and molecular-level analysis of the gas-phase product compounds. ACS Earth Space Chem. 8, 2166–2175 (2024).

    Article  Google Scholar 

  178. Marks, J., Kantamaneni, R., Pape, D. & Rand, S. in Essential Readings in Light Metals, 1032–1036 (Springer, 2016).

  179. Smart, B. E. & Fernandez, R. E. Fluorinated aliphatic compounds. In Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2000).

  180. Ye, R. et al. A method to measure total gaseous fluorine. Environ. Sci. Technol. Lett. 11, 1062–1067 (2024).

    Article  Google Scholar 

  181. Liang, Y. et al. Municipal sewage sludge incineration and its air pollution control. J. Clean. Prod. 295, 126456 (2021).

    Article  Google Scholar 

  182. Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances (OECD, 2021)

  183. Buck, R. C. et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr. Environ. Assess. Manag. 7, 513–541 (2011).

    Article  Google Scholar 

  184. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article  Google Scholar 

  185. Lorpaiboon, W. & Ho, J. High-level quantum chemical prediction of C–F bond dissociation energies of perfluoroalkyl substances. J. Phys. Chem. A 127, 7943–7953 (2023).

    Article  Google Scholar 

  186. Research on per- and polyfluoroalkyl substances (PFAS). ITRC https://pfas-1.itrcweb.org/wp-content/uploads/2023/12/Full-PFAS-Guidance-12.11.2023.pdf (2023).

  187. De Silva, A. O. et al. PFAS exposure pathways for humans and wildlife: a synthesis of current knowledge and key gaps in understanding. Environ. Toxicol. Chem. 40, 631–657 (2021).

    Article  Google Scholar 

  188. Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2018).

    Article  Google Scholar 

  189. Lang, J. R., Allred, B. M., Field, J. A., Levis, J. W. & Barlaz, M. A. National estimate of per- and polyfluoroalkyl substance (PFAS) release to U.S. municipal landfill leachate. Environ. Sci. Technol. 51, 2197–2205 (2017).

    Article  Google Scholar 

  190. Brusseau, M. L., Anderson, R. H. & Guo, B. PFAS concentrations in soils: background levels versus contaminated sites. Sci. Total Environ. 740, 140017 (2020).

    Article  Google Scholar 

  191. Barton, C. A., Butler, L. E., Zarzecki, C. J., Flaherty, J. & Kaiser, M. Characterizing perfluorooctanoate in ambient air near the fence line of a manufacturing facility: comparing modeled and monitored values. J. Air Waste Manag. Assoc. 56, 48–55 (2006).

    Article  Google Scholar 

  192. Hu, X. C. et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ. Sci. Technol. Lett. 3, 344–350 (2016).

    Article  Google Scholar 

  193. Sun, M. et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear river watershed of North Carolina. Environ. Sci. Technol. Lett. 3, 415–419 (2016).

    Article  Google Scholar 

  194. Goodrum, P. E., Anderson, J. K., Luz, A. L. & Ansell, G. K. Application of a framework for grouping and mixtures toxicity assessment of PFAS: a closer examination of dose-additivity approaches. Toxicol. Sci. 179, 262–278 (2021).

    Article  Google Scholar 

  195. Kabadi, S. V. et al. Characterizing biopersistence potential of the metabolite 5:3 fluorotelomer carboxylic acid after repeated oral exposure to the 6:2 fluorotelomer alcohol. Toxicol. Appl. Pharmacol. 388, 114878 (2020).

    Article  Google Scholar 

  196. Wolf, C. J., Rider, C. V., Lau, C. & Abbott, B. D. Evaluating the additivity of perfluoroalkyl acids in binary combinations on peroxisome proliferator-activated receptor-α activation. Toxicology 316, 43–54 (2014).

    Article  Google Scholar 

  197. Shoemaker, J. et al. Method 537.1: Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS) (USEPA, 2020).

  198. Wendelken, S. C., Rosenblum, L. & USEPA. Method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (USEPA, 2019).

  199. EPA Office of Water. Method 1633, Revision A: Analysis of Per-and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS (USEPA, 2024).

  200. Other Test Method 50 (OTM-50) Sampling and Analysis of Volatile Fluorinated Compounds from Stationary Sources Using Passivated Stainless-Steel Canisters (USEPA, 2024).

Download references

Acknowledgements

The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency (EPA) or Department of Defense (DOD). Any mention of trade names, manufacturers or products does not imply an endorsement by the United States Government or the US EPA or DOD. US EPA and DOD and its employees do not endorse any commercial products, services or enterprises. This review was supported, in part, by funding from the US Army Corps of Engineers (W912HZ-23-2-0009) and various Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) projects through the US DOD.

Author information

Authors and Affiliations

Authors

Contributions

S. Silsby provided overall coordination for the Review. S. Silsby, S. Sühnholz, D.R.U.K. and C.P.H. developed the concept for the Review. Initial draft writing was conducted by S. Silsby, S. Sühnholz, M.Q., K.D., C.Y., D.R.U.K. and C.P.H. Figures were drafted by S. Silsby, S. Sühnholz, M.Q. and N.S. All authors contributed views and opinions, and reviewed the final manuscript.

Corresponding authors

Correspondence to Detlef R. U. Knappe or Christopher P. Higgins.

Ethics declarations

Competing interests

R.S.G. is an employee of Alcoa Corporation, which is involved in bauxite mining, alumina refining and aluminium smelting operations worldwide. R.S.G. is an inventor of patents US9795920B2, US9327237B2, US8894748B2, US8137649B2, US7906089B2, US7645430B2 and EU2265357 in the area of gas exhaust treatment as well as patents US8673152B2, US8206586B2, US8157995B2, US7897049B2 and US5837145 in the area of water treatment. C.P.H., T.J.S. and S.H. are inventors on patent US11577111 related to the use of hydrothermal alkaline conditions for PFAS destruction. T.J.S. is also a paid technical advisor for Aquagga, Inc., which has licensed patent US11577111. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Denis O’Carroll, Benjamin Fennell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

US National Toxicology Program: https://ntp.niehs.nih.gov/publications

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silsby, S., Sühnholz, S., Qanbarzadeh, M. et al. Air emissions during destruction of PFAS-containing materials. Nat Rev Earth Environ (2026). https://doi.org/10.1038/s43017-025-00755-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43017-025-00755-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene