Table 1 Training dataset for machine learning atomic potential in the Fe-H binary system
Subsets | Energy RMSE (meV/atom) | Force RMSE (meV/Å) | Number of structures |
|---|---|---|---|
a. Initial dataset | |||
1. Equilibrated Fe with dilute H | 1.00 | 25.63 | 144 |
2. Perturbed Fe with dilute H | 0.86 | 29.44 | 595 |
3. Strained Fe with 1 H | 1.83 | 24.75 | 99 |
4. H-vacancy clusters | 0.75 | 36.18 | 124 |
5. 2H in neighboring TISs | 1.12 | 17.83 | 207 |
6. Single H atom and H₂ molecules | 13.49 | 200.14 | 24 |
All initial datasets | 1.52 | 50.12 | 270 |
b. DP-GEN dataset | |||
1. Fe with dilute H | 2.17 | 83.23 | 1212 |
2. Fe with high concentration H | 4.77 | 132.41 | 2088 |
3. H atoms in vacancy | 5.36 | 142.26 | 901 |
4. H atoms on surface | 6.45 | 167.85 | 1408 |
5. Generalized stacking faults with H atoms | 6.16 | 141.73 | 1081 |
6. Perturbed tilt grain boundaries with H atoms | 6.19 | 136.26 | 4924 |
7. Self-interstitial atom (\(\left\langle 111\right\rangle\), \(\left\langle 110\right\rangle\), \(\left\langle 100\right\rangle\) dumbbell) | 4.61 | 104.70 | 5591 |
8. H atoms in vacancy cluster | 2.51 | 104.35 | 16531 |
All datasets | 4.09 | 109.16 | 36438 |