Abstract
Global aridification threatens dryland ecosystems biodiversity and stability, yet the influence of multidimensional biodiversity on stability across aridity gradients is complex and context-dependent. Here we analyze plant and soil microbial diversity (taxonomic, phylogenetic, functional) across a 3,000-kilometer aridity gradient on the Mongolian Plateau and use multi-year observations from two validation sites. We identify a critical aridity threshold (Aridity ≈ 0.83) where stability mechanisms abruptly shift. Below this threshold (less arid conditions), ecosystem stability is positively linked to plant and fungal taxonomic richness. Above it (more arid conditions), stability correlates with conservative plant traits (lower special leaf area) and lower phylogenetic diversity, reflecting environmental filtering for stress-tolerant species. This transition is driven by a shift from C3 to C4 plant dominance, altering community traits and plant-microbial interactions. While our correlational findings require experimental confirmation, they challenge linear stability models, highlighting the importance of threshold-dependent biodiversity-environment interactions for dryland management.
Similar content being viewed by others
Data availability
All data generated in this study, including raw sequencing Fastq files, have been deposited in the Zenodo repository73 (https://doi.org/10.5281/zenodo.17930601).
Code availability
All analysis R code used to create the tables and figures have been deposited in the Zenodo repository73 (https://doi.org/10.5281/zenodo.17930601).
References
Chen, S. P. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 115, 4027–4032 (2018).
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 116, 8419–8424 (2019).
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
Bai, Y. F., Han, X. G., Wu, J. G., Chen, Z. Z. & Li, L. H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
Cadotte, M. W., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233 (2012).
Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).
Liu, S. E. et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 6, 900–909 (2022).
Sasaki, T. et al. Dryland sensitivity to climate change and variability using nonlinear dynamics. Proc. Natl. Acad. Sci. USA 120, e2305050120 (2023).
Wang, B. et al. Temporal asynchrony of plant and soil biota determines ecosystem multifunctional stability. Glob. Change Biol. 30, e17483 (2024).
Wu, L. J. et al. Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecol. Lett. 26, 858–868 (2023).
Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).
Cardinale, B., Palmer, M. & Collins, S. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).
Chen, L. T. et al. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. 30, 1418–1429 (2021).
Zhang, H. et al. Plants and soil biota co-regulate stability of ecosystem multifunctionality under multiple environmental changes. Ecology 106, e4534 (2025).
Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).
Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).
Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).
Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).
Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. USA 105, 17012–17017 (2008).
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Coelho de Souza, F. et al. Evolutionary diversity is associated with wood productivity in Amazonian forests. Nat. Ecol. Evol. 3, 1754–1761 (2019).
Pu, Z., Daya, P., Tan, J. & Jiang, L. Phylogenetic diversity stabilizes community biomass. J. Plant Ecol. 7, 176–187 (2014).
Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).
Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).
Yan, P. et al. Plant acquisitive strategies promote resistance and temporal stability of semiarid grasslands. Ecol. Lett. 28, e70110 (2025).
Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 1–9 (2017).
García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl. Acad. Sci. USA 115, 8400–8405 (2018).
Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).
Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).
Sasaki, T. et al. Aridity-dependent shifts in biodiversity–stability relationships but not in underlying mechanisms. Glob. Change Biol. 30, e17365 (2024).
Hu, W. G. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).
Griffin-Nolan, R. J. et al. Shifts in plant functional composition following long-term drought in grasslands. J. Ecol. 107, 2133–2148 (2019).
Li, D. J., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proc. Natl. Acad. Sci. USA 116, 19989–19994 (2019).
Zhu, J. T. et al. Warming alters plant phylogenetic and functional community structure. J. Ecol. 108, 2406–2415 (2020).
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C 4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123, 15–31 (2000).
Wittmer, M. H. O. M., Auerswald, K., Bai, Y. F., Schäufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Change Biol. 16, 605–616 (2010).
Shi, Z. et al. Successional change in species composition alters climate sensitivity of grassland productivity. Glob. Change Biol. 24, 4993–5003 (2018).
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).
Luo, W. T. et al. Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology 102, e03465 (2021).
Sasaki, T. & Lauenroth, W. K. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166, 761–768 (2011).
Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).
Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).
Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).
Tang, B., Man, J., Lehmann, A. & Rillig, M. C. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecol. Lett. 26, 2087–2097 (2023).
Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–745 (2014).
Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).
Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).
Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
Zhang, H. J., Dong, L. Z., Yao, X. D. & Wang, W. Soil fertility shifts the relative importance of saprotrophic and mycorrhizal fungi for maintaining ecosystem stability. Glob. Change Biol. 29, 1206–1216 (2023).
Chen, D. M. et al. Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. J. Ecol. 104, 734–743 (2016).
Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).
Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335 (2003).
Sparks D. L., Page A. L., Helmke P. A., Loeppert R. H. Methods of Soil Analysis, Part 3: Chemical Methods (John Wiley & Sons, 2020).
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).
Zhang, E. T. et al. Mycorrhizal symbiosis increases plant phylogenetic diversity and regulates community assembly in grasslands. Ecol. Lett. 27, e14516 (2024).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Wu, L. J. et al. Environmental preferences of soil microbial attributes for long-term nitrogen and acid addition: From phylotype to community. Soil Biol. Biochem. 197, 109541 (2024).
Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
Knight, C. G. et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 636 690–696 (2024).
Berdugo, M., Gaitán, J. J., Delgado-Baquerizo, M., Crowther, T. W. & Dakos, V. Prevalence and drivers of abrupt vegetation shifts in global drylands. Proc. Natl. Acad. Sci. USA 119, e2123393119 (2022).
Fong, Y. Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 454 (2017).
Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).
Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2007).
Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Chen, D. Threshold-dependent shifts in ecosystem stability across aridity gradients on the Mongolian Plateau. Zenodo https://doi.org/10.5281/zenodo.17930601 (2025).
Acknowledgements
This study was supported by the National Natural Science Foundation of China (32571913, 42177272, 32201404, 32401430, and 32301441), Natural Science Foundation of Inner Mongolia (2025ZD006), and the Junma Program of the Inner Mongolia University (10000-23112101/159).
Author information
Authors and Affiliations
Contributions
D.C. and Y.B. conceived the research. W.C., L.W., B.W., and D.C. conducted the field experiment. W.C., L.W., B.W., Y.W., and D.C. performed lab analyses. W.C., L.W., B.W., and D.C. analyzed the data and wrote the manuscript with significant input from all other authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Erika Buscardo and Mengjie Wang. [A peer review file is available].
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Chen, W., Wu, L., Wang, B. et al. Threshold-dependent shifts in ecosystem stability across aridity gradients on the Mongolian Plateau. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03173-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-025-03173-5


