Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Threshold-dependent shifts in ecosystem stability across aridity gradients on the Mongolian Plateau
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Threshold-dependent shifts in ecosystem stability across aridity gradients on the Mongolian Plateau

  • Wanjie Chen  ORCID: orcid.org/0000-0002-9697-818X1,2 na1,
  • Liji Wu1,2 na1,
  • Bing Wang1,2 na1,
  • Ying Wu1,2,
  • Yongfei Bai  ORCID: orcid.org/0000-0001-6656-45013,4 &
  • …
  • Dima Chen  ORCID: orcid.org/0000-0002-1687-04011,2 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1258 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate-change ecology
  • Ecosystem ecology

Abstract

Global aridification threatens dryland ecosystems biodiversity and stability, yet the influence of multidimensional biodiversity on stability across aridity gradients is complex and context-dependent. Here we analyze plant and soil microbial diversity (taxonomic, phylogenetic, functional) across a 3,000-kilometer aridity gradient on the Mongolian Plateau and use multi-year observations from two validation sites. We identify a critical aridity threshold (Aridity ≈ 0.83) where stability mechanisms abruptly shift. Below this threshold (less arid conditions), ecosystem stability is positively linked to plant and fungal taxonomic richness. Above it (more arid conditions), stability correlates with conservative plant traits (lower special leaf area) and lower phylogenetic diversity, reflecting environmental filtering for stress-tolerant species. This transition is driven by a shift from C3 to C4 plant dominance, altering community traits and plant-microbial interactions. While our correlational findings require experimental confirmation, they challenge linear stability models, highlighting the importance of threshold-dependent biodiversity-environment interactions for dryland management.

Similar content being viewed by others

Aridity-driven shift in biodiversity–soil multifunctionality relationships

Article Open access 09 September 2021

Relative contributions of taxonomic and functional diversity to the assembly of plant communities hosting endemic Dianthus species in a mountain steppe

Article Open access 05 March 2024

Insights from a century of data reveal global trends in ex situ living plant collections

Article Open access 21 January 2025

Data availability

All data generated in this study, including raw sequencing Fastq files, have been deposited in the Zenodo repository73 (https://doi.org/10.5281/zenodo.17930601).

Code availability

All analysis R code used to create the tables and figures have been deposited in the Zenodo repository73 (https://doi.org/10.5281/zenodo.17930601).

References

  1. Chen, S. P. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 115, 4027–4032 (2018).

    Google Scholar 

  2. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  3. Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 116, 8419–8424 (2019).

    Google Scholar 

  4. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Google Scholar 

  5. Bai, Y. F., Han, X. G., Wu, J. G., Chen, Z. Z. & Li, L. H. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).

    Google Scholar 

  6. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Google Scholar 

  7. Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Google Scholar 

  8. Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Google Scholar 

  9. Cadotte, M. W., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233 (2012).

    Google Scholar 

  10. Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    Google Scholar 

  11. Liu, S. E. et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 6, 900–909 (2022).

    Google Scholar 

  12. Sasaki, T. et al. Dryland sensitivity to climate change and variability using nonlinear dynamics. Proc. Natl. Acad. Sci. USA 120, e2305050120 (2023).

    Google Scholar 

  13. Wang, B. et al. Temporal asynchrony of plant and soil biota determines ecosystem multifunctional stability. Glob. Change Biol. 30, e17483 (2024).

    Google Scholar 

  14. Wu, L. J. et al. Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecol. Lett. 26, 858–868 (2023).

    Google Scholar 

  15. Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    Google Scholar 

  16. Cardinale, B., Palmer, M. & Collins, S. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).

    Google Scholar 

  17. Chen, L. T. et al. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. 30, 1418–1429 (2021).

    Google Scholar 

  18. Zhang, H. et al. Plants and soil biota co-regulate stability of ecosystem multifunctionality under multiple environmental changes. Ecology 106, e4534 (2025).

  19. Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Google Scholar 

  20. Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 104, 20684–20689 (2007).

    Google Scholar 

  21. Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).

    Google Scholar 

  22. Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    Google Scholar 

  23. Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. USA 105, 17012–17017 (2008).

    Google Scholar 

  24. Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Google Scholar 

  25. Coelho de Souza, F. et al. Evolutionary diversity is associated with wood productivity in Amazonian forests. Nat. Ecol. Evol. 3, 1754–1761 (2019).

    Google Scholar 

  26. Pu, Z., Daya, P., Tan, J. & Jiang, L. Phylogenetic diversity stabilizes community biomass. J. Plant Ecol. 7, 176–187 (2014).

    Google Scholar 

  27. Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).

    Google Scholar 

  28. Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Google Scholar 

  29. Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Google Scholar 

  30. Yan, P. et al. Plant acquisitive strategies promote resistance and temporal stability of semiarid grasslands. Ecol. Lett. 28, e70110 (2025).

    Google Scholar 

  31. Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 1–9 (2017).

    Google Scholar 

  32. García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl. Acad. Sci. USA 115, 8400–8405 (2018).

    Google Scholar 

  33. Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

    Google Scholar 

  34. Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).

    Google Scholar 

  35. Sasaki, T. et al. Aridity-dependent shifts in biodiversity–stability relationships but not in underlying mechanisms. Glob. Change Biol. 30, e17365 (2024).

    Google Scholar 

  36. Hu, W. G. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    Google Scholar 

  37. Griffin-Nolan, R. J. et al. Shifts in plant functional composition following long-term drought in grasslands. J. Ecol. 107, 2133–2148 (2019).

    Google Scholar 

  38. Li, D. J., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proc. Natl. Acad. Sci. USA 116, 19989–19994 (2019).

    Google Scholar 

  39. Zhu, J. T. et al. Warming alters plant phylogenetic and functional community structure. J. Ecol. 108, 2406–2415 (2020).

    Google Scholar 

  40. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Google Scholar 

  41. Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C 4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123, 15–31 (2000).

    Google Scholar 

  42. Wittmer, M. H. O. M., Auerswald, K., Bai, Y. F., Schäufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Change Biol. 16, 605–616 (2010).

    Google Scholar 

  43. Shi, Z. et al. Successional change in species composition alters climate sensitivity of grassland productivity. Glob. Change Biol. 24, 4993–5003 (2018).

    Google Scholar 

  44. Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Google Scholar 

  45. Luo, W. T. et al. Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology 102, e03465 (2021).

    Google Scholar 

  46. Sasaki, T. & Lauenroth, W. K. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166, 761–768 (2011).

    Google Scholar 

  47. Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).

    Google Scholar 

  48. Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).

    Google Scholar 

  49. Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).

    Google Scholar 

  50. Tang, B., Man, J., Lehmann, A. & Rillig, M. C. Arbuscular mycorrhizal fungi benefit plants in response to major global change factors. Ecol. Lett. 26, 2087–2097 (2023).

    Google Scholar 

  51. Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–745 (2014).

    Google Scholar 

  52. Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).

    Google Scholar 

  53. Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105, 11512–11519 (2008).

    Google Scholar 

  54. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Google Scholar 

  55. Zhang, H. J., Dong, L. Z., Yao, X. D. & Wang, W. Soil fertility shifts the relative importance of saprotrophic and mycorrhizal fungi for maintaining ecosystem stability. Glob. Change Biol. 29, 1206–1216 (2023).

    Google Scholar 

  56. Chen, D. M. et al. Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. J. Ecol. 104, 734–743 (2016).

    Google Scholar 

  57. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Google Scholar 

  58. Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335 (2003).

    Google Scholar 

  59. Sparks D. L., Page A. L., Helmke P. A., Loeppert R. H. Methods of Soil Analysis, Part 3: Chemical Methods (John Wiley & Sons, 2020).

  60. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu Rev. Ecol. Syst. 33, 475–505 (2002).

    Google Scholar 

  61. Zhang, E. T. et al. Mycorrhizal symbiosis increases plant phylogenetic diversity and regulates community assembly in grasslands. Ecol. Lett. 27, e14516 (2024).

    Google Scholar 

  62. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Google Scholar 

  63. Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Google Scholar 

  64. Wu, L. J. et al. Environmental preferences of soil microbial attributes for long-term nitrogen and acid addition: From phylotype to community. Soil Biol. Biochem. 197, 109541 (2024).

    Google Scholar 

  65. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Google Scholar 

  66. Knight, C. G. et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 636 690–696 (2024).

  67. Berdugo, M., Gaitán, J. J., Delgado-Baquerizo, M., Crowther, T. W. & Dakos, V. Prevalence and drivers of abrupt vegetation shifts in global drylands. Proc. Natl. Acad. Sci. USA 119, e2123393119 (2022).

    Google Scholar 

  68. Fong, Y. Y., Huang, Y., Gilbert, P. B. & Permar, S. R. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 454 (2017).

    Google Scholar 

  69. Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).

    Google Scholar 

  70. Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2007).

    Google Scholar 

  71. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 

  72. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  73. Chen, D. Threshold-dependent shifts in ecosystem stability across aridity gradients on the Mongolian Plateau. Zenodo https://doi.org/10.5281/zenodo.17930601 (2025).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (32571913, 42177272, 32201404, 32401430, and 32301441), Natural Science Foundation of Inner Mongolia (2025ZD006), and the Junma Program of the Inner Mongolia University (10000-23112101/159).

Author information

Author notes
  1. These authors contributed equally: Wanjie Chen, Liji Wu, Bing Wang.

Authors and Affiliations

  1. Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China

    Wanjie Chen, Liji Wu, Bing Wang, Ying Wu & Dima Chen

  2. Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China

    Wanjie Chen, Liji Wu, Bing Wang, Ying Wu & Dima Chen

  3. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China

    Yongfei Bai

  4. University of Chinese Academy of Sciences, Beijing, China

    Yongfei Bai

Authors
  1. Wanjie Chen
    View author publications

    Search author on:PubMed Google Scholar

  2. Liji Wu
    View author publications

    Search author on:PubMed Google Scholar

  3. Bing Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Ying Wu
    View author publications

    Search author on:PubMed Google Scholar

  5. Yongfei Bai
    View author publications

    Search author on:PubMed Google Scholar

  6. Dima Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

D.C. and Y.B. conceived the research. W.C., L.W., B.W., and D.C. conducted the field experiment. W.C., L.W., B.W., Y.W., and D.C. performed lab analyses. W.C., L.W., B.W., and D.C. analyzed the data and wrote the manuscript with significant input from all other authors.

Corresponding author

Correspondence to Dima Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Erika Buscardo and Mengjie Wang. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supporting Information

nr-reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wu, L., Wang, B. et al. Threshold-dependent shifts in ecosystem stability across aridity gradients on the Mongolian Plateau. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-025-03173-5

Download citation

  • Received: 16 June 2025

  • Accepted: 25 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s43247-025-03173-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing