Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Fiber-optic observations capture wind wave evolution in Lake Ontario
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Fiber-optic observations capture wind wave evolution in Lake Ontario

  • Chu-Fang Yang  ORCID: orcid.org/0000-0002-9595-72131 nAff4,
  • Zack Spica  ORCID: orcid.org/0000-0002-9259-19731,
  • Ayumi Fujisaki-Manome  ORCID: orcid.org/0000-0001-5466-63322,3 &
  • …
  • Yaolin Miao  ORCID: orcid.org/0009-0008-6154-89651 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1101 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geophysics
  • Natural hazards
  • Physical oceanography
  • Seismology

Abstract

Storm-induced waves threaten ship traffic and offshore infrastructures, yet observing water surfaces remains challenging because of complex air-water interactions and limited spatial coverage. We used distributed acoustic sensing measurements from a telecom fiber-optic cable in Lake Ontario, one of the world’s largest lakes, to analyze wind-wave evolution at tens-of-meter scales along a 43-km-long array. By combining observations and modeling, we found that chaotic waves induced by local wind forcing and wave-wave interactions generate high-frequency microseisms (1–4 Hz), whereas frequency variations in low-frequency microseisms (0.2–1 Hz) are strongly controlled by wind speed and fetch evolution. We tracked changes in frequency and energy throughout the full life cycle of wind waves, from chaotic conditions to organized gravity waves formed under steady winds, followed by dissipation as fetch decreases. These results are particularly relevant for fetch-limited water bodies and highlight the potential of distributed acoustic sensing for real-time monitoring of wind waves, with implications for coastal hazards, ecosystem dynamics, and wave-energy development.

Similar content being viewed by others

Local earthquake response on the submarine communication cable in the northern South China Sea

Article Open access 15 April 2025

Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable

Article Open access 10 November 2022

Wind-wave climate changes and their impacts

Article 09 January 2024

Data availability

We used weather data from the Great Lakes Observing System, which can be accessed through the NOAA’s National Data Buoy Center at https://www.ndbc.noaa.gov/. Water level collected by the NOAA’s National Water Level Observation Network is available at https://tidesandcurrents.noaa.gov/. The wind field data from the National Digital Forecast Database, used to force the Great Lakes Operational Wave Model based on WAVEWATCH III, as well as the wave data, can be found on the Great Lakes Coastal Forecasting System website at https://www.glerl.noaa.gov/emf/waves/WW3/. The Great Lakes bathymetry data used in this paper63,64 are available from the National Centers for Environmental Information website at https://www.ncei.noaa.gov/products/great-lakes-bathymetry/. The weather, water level, model data, and 10-Hz DAS data from channels 2435, 2835, and 3235 used in the moderate wind and winter storm event analyses are available in a public data repository65. The complete DAS dataset is available from the corresponding author upon request.

References

  1. Meucci, A., Young, I. R., Hemer, M., Kirezci, E. & Ranasinghe, R. Projected 21st century changes in extreme wind-wave events. Sci. Adv. 6, eaaz7295 (2020).

    Google Scholar 

  2. Jabbari, A., Ackerman, J. D., Boegman, L. & Zhao, Y. Increases in Great Lake winds and extreme events facilitate interbasin coupling and reduce water quality in Lake Erie. Sci. Rep. 11, 5733 (2021).

    Google Scholar 

  3. Sverdrup, H. U. & Munk, W. H. Empirical and theoretical relations between wind, sea and swell. Trans. Amer. Geophys. Union 27, 823–827 (1946).

    Google Scholar 

  4. Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 81, 639–640 (1955).

    Google Scholar 

  5. Wu, J. Wind stress and surface roughness at air-sea interface. J. Geophys. Res. 74, 444–455 (1969).

    Google Scholar 

  6. Miles, J. On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185–204 (1957).

    Google Scholar 

  7. Phillips, O. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445 (1957).

    Google Scholar 

  8. Hasselmann, K. On the non-linear energy transfer in a gravity wave spectrum, 1, General theory. J. Fluid Mech. 12, 481–500 (1962).

    Google Scholar 

  9. Barber, N. F. & Ursell, F. The generation and propagation of ocean waves and swell. I: wave periods and velocities. Philos. Trans. R. Soc. A 24, 527–560 (1948).

    Google Scholar 

  10. Snodgrass, F. E. et al. Propagation of ocean swell across the Pacific. Philos. Trans. R. Soc. London A 259, 431–497 (1966).

    Google Scholar 

  11. Rhie, J. & Romanowicz, B. Excitation of Earth’s continuous free oscillations by atmosphere–ocean–seafloor coupling. Nature 431, 552–556 (2004).

    Google Scholar 

  12. Bromirski, P. D., Duennebier, F. K. & Stephen, R. A. Mid-ocean microseisms. Geochem. Geophys. Geosyst. 6, Q04009 (2005).

    Google Scholar 

  13. Hasselmann, K. A statistical analysis of the generation of microseisms. Rev. Geophys. 1, 177–210 (1963).

    Google Scholar 

  14. Ardhuin, F., Gualtieri, L. & Stutzmann, E. How ocean waves rock the Earth: two mechanisms explain microseisms with periods 3 to 300 s. Geophys. Res. Lett. 42, 765–772 (2015).

    Google Scholar 

  15. Babcock, J. M., Kirkendall, B. A. & Orcutt, J. A. Relationships between ocean bottom noise and the environment. Bull. Seismol. Soc. Am. 84, 1991–2007 (1994).

    Google Scholar 

  16. Bromirski, P. D., Flick, R. E. & Graham, N. Ocean wave height determined from inland seismometer data: implications for investigating wave climate changes in the NE Pacific. J. Geophys. Res. 104, 20753–20766 (1999).

    Google Scholar 

  17. Chi, W.-C., Chen, W.-J., Kuo, B.-Y. & Dolenc, D. Seismic monitoring of western Pacific typhoons. Mar. Geophys. Res. 31, 239–251 (2010).

    Google Scholar 

  18. Davy, C., Barruol, G., Fontaine, F. R., Sigloch, K. & Stutzmann, E. Tracking major storms from microseismic and hydroacoustic observations on the seafloor. Geophys. Res. Lett. 41, 8825–8831 (2014).

    Google Scholar 

  19. Lin, J., Ji, C., Ying, C. & Xu, W. Tropical cyclone wind speed inversion using seafloor Rayleigh-wave microseisms. IEEE J. Ocean. Eng. 50, 73–83 (2025).

    Google Scholar 

  20. Longuet-Higgins, M. & Stewart, R. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech. 13, 481–504 (1962).

    Google Scholar 

  21. Ardhuin, F., Stutzmann, E., Schimmel, M. & Mangeney, A. Ocean wave sources of seismic noise. J. Geophys. Res. 116, C09004 (2011).

    Google Scholar 

  22. Haubrich, R. A. & McCamy, K. Microseisms: coastal and pelagic sources. Rev. Geophys. 7, 539–571 (1969).

    Google Scholar 

  23. Juretzek, C. & Hadziioannou, C. Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios. J. Geophys. Res. Solid Earth 121, 6741–6756 (2016).

    Google Scholar 

  24. Jensen, F. B. & Schmidt, H. Shear properties of ocean sediments determined from numerical modeling of Scholte wave data. In: Akal, T., Berkson, J. M. (eds) Ocean Seismo-Acoustics (Springer, 1986).

  25. Bromirski, P. D. & Duennebier, F. K. The near-coastal microseism spectrum: spatial and temporal wave climate relationships. J. Geophys. Res. 107, 2166 (2002).

    Google Scholar 

  26. Longuet-Higgins, M. S. A theory of the origin of microseisms. Philos. Trans. R. Soc. A 243, 1–35 (1950).

    Google Scholar 

  27. Smalls, P. T., Sohn, R. A. & Collins, J. A. Lake-bottom seismograph observations of microseisms in Yellowstone Lake. Seismol. Res. Lett 90, 1200–1208 (2019).

    Google Scholar 

  28. Farrell, J., Koper, K. D. & Sohn, R. A. The relationship between wind, waves, bathymetry, and microseisms in Yellowstone Lake, Yellowstone National Park. J. Geophys. Res. Solid Earth 128, e2022JB025943 (2023).

    Google Scholar 

  29. Kerman, B. R. & Mereu, R. F. Wind-induced microseisms from Lake Ontario. Atmos. Ocean 31, 501–516 (1993).

    Google Scholar 

  30. Anthony, R. E., Ringler, A. T. & Wilson, D. C. The widespread influence of Great Lakes microseisms across the Midwestern United States revealed by the 2014 polar vortex. Geophys. Res. Lett. 45, 3436–3444 (2018).

    Google Scholar 

  31. Kerman, B. R., Mereu, R. F. & Roy, D. Wind-induced microseisms from large lakes. Sea Surface Sound 94, 143–156 (1995).

    Google Scholar 

  32. Xu, Y., Koper, K. D. & Burlacu, R. Lakes as a source of short-period (0.5–2s) microseisms. J. Geophys. Res. Solid Earth 122, 8241–8256 (2017).

    Google Scholar 

  33. Carchedi, C. J. W., Gaherty, J. B., Webb, S. C. & Shillington, D. J. Investigating short-period lake-generated microseisms using a broadband array of onshore and lake-bottom seismometers. Seismol. Res. Lett. 93, 1585–1600 (2022).

    Google Scholar 

  34. Webb, S. C. The equilibrium oceanic microseism spectrum. J. Acoust. Soc. Am. 92, 2141–2158 (1992).

    Google Scholar 

  35. Pierson, W. J. Jr. & Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69, 5181–5190 (1964).

    Google Scholar 

  36. Hasselmann, K. et al. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Ergänzugsh. Dtsch. Hydrogr. Z. 12A. (1973).

  37. Forristall, G. Z. Measurements of a saturated range in ocean wave spectra. J. Geophys. Res. 86, 8075–8084 (1981).

    Google Scholar 

  38. Voermans, J. J., Smit, P. B., Janssen, T. & Babanin, A. V. Estimating wind speed and direction using wave spectra. J. Geophys. Res. Oceans 125, e2019JC015717 (2020).

    Google Scholar 

  39. Williams, E. F. et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 10, 5778 (2019).

    Google Scholar 

  40. Guerin, G. et al. Quantifying microseismic noise generation from coastal reflection of gravity waves recorded by seafloor DAS. Geophys. J. Int. 231, 394–407 (2022).

    Google Scholar 

  41. Xiao, H., Spica, Z. J., Li, J. & Zhan, Z. Detection of earthquake infragravity and tsunami waves with underwater distributed acoustic sensing. Geophys. Res. Lett. 51, e2023GL106767 (2024).

    Google Scholar 

  42. Williams, E. F. et al. Surface gravity wave interferometry and ocean current monitoring with ocean-bottom DAS. J. Geophys. Res. Oceans 127, e2021JC018375 (2022).

    Google Scholar 

  43. Mata Flores, D., Sladen, A., Ampuero, J.-P., Mercerat, E. D. & Rivet, D. Monitoring deep Sea currents with seafloor distributed acoustic sensing. Earth Space Sci. 10, e2022EA002723 (2023).

    Google Scholar 

  44. Lin, J. et al. Monitoring ocean currents during the passage of Typhoon Muifa using optical-fiber distributed acoustic sensing. Nat. Commun. 15, 1111 (2024).

    Google Scholar 

  45. Pelaez Quiñones, J. D. et al. High resolution seafloor thermometry for internal wave and upwelling monitoring using distributed acoustic sensing. Sci. Rep. 13, 17459 (2023).

    Google Scholar 

  46. Xiao, H. et al. Locating the precise sources of high-frequency microseisms using distributed acoustic sensing. Geophys. Res. Lett. 49, e2022GL099292 (2022).

    Google Scholar 

  47. Spica, Z. J. et al. Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophys. Res. Lett. 47, e2020GL088360 (2020).

    Google Scholar 

  48. Meulé, S. et al. Reconstruction of nearshore surface gravity wave heights from distributed acoustic sensing data. Earth Space Sci 11, e2024EA003589 (2024).

    Google Scholar 

  49. Lindsey, N. J., Rademacher, H. & Ajo-Franklin, J. B. On the broadband instrument response of fiber-optic DAS arrays. J. Geophys. Res. Solid Earth 125, e2019JB018145 (2020).

    Google Scholar 

  50. Lindsey, N. J. & Martin, E. R. Fiber-optic seismology. Annu. Rev. Earth Planet. Sci. 49, 309–336 (2021).

    Google Scholar 

  51. Glover, H. E., Wengrove, M. E. & Holman, R. Measuring hydrodynamics and exploring nearshore processes using distributed sensing of fiber-optic cable strain. Coast. Eng. 190, 104487 (2024).

    Google Scholar 

  52. Tolman, H. L. et al. Development and implementation of wind-generated ocean surface wave models at NCEP. Wea. Forecasting 17, 311–333 (2002).

    Google Scholar 

  53. The WAVEWATCH III Development Group (WW3DG). User manual and system documentation of WAVEWATCH III version 6.07.1. Tech. Note 333. NOAA/NWS/NCEP/MMAB, 465 (WW3DG, 2019).

  54. Alves, J.-H. et al. NOAA’s great lakes wave prediction system: a successful framework for accelerating the transition of innovations to operations. Bull. Am. Meteorol. Soc. 104, E837–E850 (2023).

    Google Scholar 

  55. Abdolali, A. et al. Great Lakes wave forecast system on high-resolution unstructured meshes. Geosci. Model Dev. 17, 1023–1039 (2024).

    Google Scholar 

  56. U.S. Army Corps of Engineers (USACE). Shore Protection Manual. Coastal Engineering Research Center: Fort Belvoir, Virginia, (USACE, 1984).

  57. Young, I. R. & Verhagen, L. A. The growth of fetch limited waves in water of finite depth. 1. Total energy and peak frequency. Coastal Eng. 29, 47–78 (1996).

    Google Scholar 

  58. Reinsch, T., Thurley, T. & Jousset, P. On the coupling of a fiber optic cable used for distributed acoustic/vibration sensing applications—a theoretical consideration. Meas. Sci. Technol. 28, 12 (2017).

    Google Scholar 

  59. Magalhães, R., Neves, T., Scherino, L., Martin-Lopez, S. & Martins, H. F. Reaching long-term stability in CP-ϕOTDR. J. Lightw. Technol. 40, 3916–3922 (2022).

    Google Scholar 

  60. Mason, L. et al. Effective fetch and relative exposure index maps for the Laurentian Great Lakes. Sci Data 5, 180295 (2018).

    Google Scholar 

  61. Counihan, J. Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos. Environ. 9, 871–905 (1975).

    Google Scholar 

  62. Touma, J. S. Dependence of the wind profile power law on stability for various locations. J. Air Pollut. Control Assoc. 27, 863–866 (1977).

    Google Scholar 

  63. National Geophysical Data Center. Bathymetry of Lake Ontario. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V56H4FBH (NGDC, 1999).

  64. National Geophysical Data Center. Bathymetry of Lake Erie and Lake St. Clair. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5KS6PHK (NGDC, 1999).

  65. Yang, C.-F., Spica, Z., Fujisaki-Manome, A., & Miao, Y. Dataset for ‘Fiber-optic Observations Capture Wind Wave Evolution in Lake Ontario.” Data sets. Zenodo. https://doi.org/10.5281/zenodo.17410006 (2026).

Download references

Acknowledgements

We thank Crosslake Fiber for their assistance during the experiment. We thank Yang Li, Jing Ci Neo, and Marcelle Collares for supporting the installation and retrieval of the DAS integrator. We thank Bryan Mroczka and Dan Titze for accessing the wind and wave data archived at NOAA Great Lakes Environmental Research Laboratory. We thank the editor and anonymous reviewers for their valuable comments and constructive suggestions. C.-F.Y. expresses gratitude to Dr. Wu-Cheng Chi for the valuable discussions and to the postdoctoral fellowship program at CIGLR for awarding the NOAA grant NA22OAR4320150. Y.M. was partially supported by the U.S. Geological Survey award G23AP00498. This research (CIGLR contribution number 1274) was supported by the CIGLR Seed Funding under the same NOAA grant NA22OAR4320150. Data was processed using ObsPy (version 1.4.0; URL: http://docs.obspy.org), NumPy (version 1.26.4; URL: https://numpy.org/), and SciPy (version 1.12.0; URL: https://scipy.org/). Maps and figures were plotted with Matplotlib graphic tool (version 3.4.3; URL: http://matplotlib.org) for Python (version 3.9.7).

Author information

Author notes
  1. Chu-Fang Yang

    Present address: Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Géoazur, Valbonne, France

Authors and Affiliations

  1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA

    Chu-Fang Yang, Zack Spica & Yaolin Miao

  2. Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, USA

    Ayumi Fujisaki-Manome

  3. Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

    Ayumi Fujisaki-Manome

Authors
  1. Chu-Fang Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Zack Spica
    View author publications

    Search author on:PubMed Google Scholar

  3. Ayumi Fujisaki-Manome
    View author publications

    Search author on:PubMed Google Scholar

  4. Yaolin Miao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.-F.Y. initiated this study, performed the formal analysis, and led the writing of the manuscript. Z.S. conceived and initiated the project and secured funding. A.F.-M. processed the wave, wind, and bathymetry data. Y.M. processed the raw DAS data. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Chu-Fang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Jan Dettmer and Alice Drinkwater. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CF., Spica, Z., Fujisaki-Manome, A. et al. Fiber-optic observations capture wind wave evolution in Lake Ontario. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03182-y

Download citation

  • Received: 13 May 2025

  • Accepted: 02 January 2026

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03182-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing