Abstract
The January 2022 eruption of the Hunga volcano (20∘S) injected 150 Tg of water vapour into the middle atmosphere, leading to an increase in the stratospheric water burden of 10%, unprecedented in the observational record. In the first two years post eruption the stratospheric burden hardly changed, leaving the residence time of volcanically injected water vapour, a key control on its climate impact, uncertain. Here, using satellite observations, we show a substantial decline from 2024 to early 2025, the largest drop since the eruption. Comparison with 3-D numerical model simulations shows that the long-term removal of the Hunga water has now entered a new phase, with stratosphere-troposphere exchange playing an increasingly important role, exceeding Antarctic dehydration in 2024. We estimate that the additional stratospheric water vapour is now decaying steadily with an e-folding time of 3 years and will reach the observed pre-Hunga range of variability around 2030.
Similar content being viewed by others
Data availability
MLS satellite data, including the version 5 H2O data used in this paper49, are publicly available at https://disc.gsfc.nasa.gov. TOMCAT model outputs are available on request from the corresponding authors. All of the pre-processed model data (for example, monthly mean water vapour mass averaged globally and over Antarctica from TOMCAT and water vapour mass interpolated onto the MLS vertical coordinates) are available at Zenodo (https://doi.org/10.5281/zenodo.18193651)50.
Code availability
Code from the TOMCAT CTM is available on suitable request from Martyn Chipperfield. The code used to generate all of the figures in this analysis is available at Zenodo (https://doi.org/10.5281/zenodo.18193651)50.
References
Forster, P. M. D. F. & Shine, K. P. Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett. 29, 10–1–10–4 (2002).
Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).
Millán, L. et al. Hunga Tonga-Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett. 49, e2022GL099381 (2022).
Evan, S. et al. Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga eruption. Science 382, eadg2551 (2023).
Santee, M. L. et al. Strong evidence of heterogeneous processing on stratospheric sulfate aerosol in the extrapolar Southern Hemisphere following the 2022 Hunga Tonga-Hunga Ha’apai eruption. J. Geophys. Res.: Atmospheres 128, e2023JD039169 (2023).
Wilmouth, D. M., Østerstrøm, F. F., Smith, J. B., Anderson, J. G. & Salawitch, R. J. Impact of the Hunga Tonga volcanic eruption on stratospheric composition. Proc. Natl. Acad. Sci. 120, e2301994120 (2023).
Zhu, Y. et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ. 3, 248 (2022).
Coy, L. et al. Stratospheric circulation changes associated with the Hunga Tonga-Hunga Ha’apai eruption. Geophys. Res. Lett. 49, e2022GL100982 (2022).
Schoeberl, M. R. et al. Analysis and impact of the Hunga Tonga-Hunga Ha’apai stratospheric water vapor plume. Geophys. Res. Lett. 49, e2022GL100248 (2022).
Sellitto, P. et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ. 3, 288 (2022).
Yu, W. et al. Mesospheric temperature and circulation response to the Hunga Tonga-Hunga-Ha’apai volcanic eruption. J. Geophys. Res.: Atmospheres 128, e2023JD039636 (2023).
Jenkins, S., Smith, C., Allen, M. & Grainger, R. Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 ∘C. Nat. Clim. Change 13, 127–129 (2023).
Schoeberl, M. R. et al. Evolution of the climate forcing during the two years after the Hunga Tonga-Hunga Ha’apai eruption. J. Geophys. Res.: Atmospheres 129, e2024JD041296 (2024).
Stenchikov, G., Ukhov, A. & Osipov, S. Modeling the radiative forcing and atmospheric temperature perturbations caused by the 2022 Hunga volcano explosion. J. Geophys. Res.: Atmospheres 130, e2024JD041940 (2025).
Vömel, H., Oltmans, S., Hofmann, D., Deshler, T. & Rosen, J. The evolution of the dehydration in the Antarctic stratospheric vortex. J. Geophys. Res.: Atmospheres 100, 13919–13926 (1995).
Holton, J. R. et al. Stratosphere-troposphere exchange. Rev. Geophys. 33, 403–439 (1995).
Nedoluha, G. E. et al. Water vapor measurements in the mesosphere from Mauna Loa over solar cycle 23. J. Geophys. Res.: Atm. 114, D23303 (2009).
Millán, L. et al. The evolution of the Hunga hydration in a moistening stratosphere. Geophys. Res. Lett. 51, e2024GL110841 (2024).
Zhou, X. et al. Antarctic vortex dehydration in 2023 as a substantial removal pathway for Hunga Tonga-Hunga Ha’apai water vapor. Geophys. Res. Lett. 51, e2023GL107630 (2024).
Khaykin, S. et al. Global perturbation of stratospheric water and aerosol burden by Hunga eruption. Commun. Earth Environ. 3, 316 (2022).
Zhuo, Z. et al. Comparing multi-model ensemble simulations with observations and decadal projections of upper atmospheric variations following the Hunga eruption. Atmos. Chem. Phys. 25, 13161–13176 (2025).
Waters, J. W. et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 44, 1106–1121 (2006).
Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E. & Forster, P. Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res.: Atmospheres 111, D2312 (2006).
Urban, J., Lossow, S., Stiller, G. & Read, W. Another drop in water vapor. Eos, Trans. Am. Geophys. Union 95, 245–246 (2014).
Chipperfield, M. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorological Soc.: A J. Atmos. Sci., Appl. Meteorol. Phys. Oceanogr. 132, 1179–1203 (2006).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorological Soc. 146, 1999–2049 (2020).
Mote, P. W. et al. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res.: Atmospheres 101, 3989–4006 (1996).
Manney, G. L. et al. Siege in the southern stratosphere: Hunga Tonga-Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophys. Res. Lett. 50, e2023GL103855 (2023).
Santee, M. L. et al. The influence of stratospheric hydration from the Hunga eruption on chemical processing in the 2023 Antarctic vortex. J. Geophys. Res.: Atmospheres 129, e2023JD040687 (2024).
Wohltmann, I., Santee, M. L., Manney, G. L. & Millán, L. F. The chemical effect of increased water vapor from the Hunga Tonga-Hunga Ha’apai eruption on the Antarctic ozone hole. Geophys. Res. Lett. 51, e2023GL106980 (2024).
Pitts, M. C., Poole, L. R., Dörnbrack, A. & Thomason, L. W. The 2009-2010 Arctic polar stratospheric cloud season: a CALIPSO perspective. Atmos. Chem. Phys. 11, 2161–2177 (2011).
Khaykin, S. M. et al. Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water. Atmos. Chem. Phys. 13, 11503–11517 (2013).
Manney, G. L. & Lawrence, Z. D. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss. Atmos. Chem. Phys. 16, 15371–15396 (2016).
Manney, G. L. et al. Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett. 47, e2020GL089063 (2020).
Newman, P. A. et al. Record high March 2024 Arctic total column ozone. Geophys. Res. Lett. 51, e2024GL110924 (2024).
Lee, S. H., Butler, A. H. & Manney, G. L. Two major sudden stratospheric warmings during winter 2023/2024. Weather 80, 45–53 (2025).
Basha, G. et al. Impact of Hunga Tonga-Hunga Ha’apai volcanic eruption on stratospheric water vapour, temperature, and ozone. Remote Sens. 15, 3602 (2023).
Nedoluha, G. E. et al. The spread of the Hunga Tonga H2O plume in the middle atmosphere over the first two years since eruption. J. Geophys. Res.: Atmospheres 129, e2024JD040907 (2024).
Manney, G. L., Zurek, R. W., O’Neill, A. & Swinbank, R. On the motion of air through the stratospheric polar vortex. J. Atmos. Sci. 51, 2973 – 2994 (1994).
Fleming, E. L., Newman, P. A., Liang, Q. & Oman, L. D. Stratospheric temperature and ozone impacts of the Hunga Tonga-Hunga Ha’apai water vapor injection. J. Geophys. Res.: Atmospheres 129, e2023JD039298 (2024).
Kuchar, A. et al. Modulation of the northern polar vortex by the Hunga Tonga–Hunga Ha’apai eruption and the associated surface response. Atmos. Chem. Phys. 25, 3623–3634 (2025).
Schoeberl, M. R., Toohey, M., Wang, Y. & Ueyama, R. Stratospheric injection lifetimes. J. Geophys. Res.:Atmospheres 130, e2025JD043928 (2025).
Toohey, M., Jia, Y., Khanal, S. & Tegtmeier, S. Stratospheric residence time and the lifetime of volcanic stratospheric aerosols. Atmos. Chem. Phys. 25, 3821–3839 (2025).
Livesey, N. J. et al. Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 5.0x level 2 and 3 data quality and description document. Tech. Rep. JPL D-105336 Rev. B, NASA Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, 91109-8099 (2022). https://mls.jpl.nasa.gov.
Lambert, A. et al. Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res 112, D24S35 (2007).
Khosrawi, F. et al. The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites. Atmos. Meas. Tech. 11, 4435–4463 (2018).
Livesey, N. J. et al. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends. Atmos. Chem. Phys. 21, 15409–15430 (2021).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. methods 17, 261–272 (2020).
Lambert, A., Read, W. & Livesey, N. MLS/Aura level 2 water vapor (H2O) mixing ratio v005 (2020). Accessed 2025-07-28.
Zhou, X. Data and code for “Residence time of Hunga stratospheric water vapour perturbation quantified at 9 years” [data set]. Zenodo https://doi.org/10.5281/zenodo.18193651 (2025).
Acknowledgements
X.Z. and Q.C. acknowledge funding from the National Natural Science Foundation of China (U2442210, 42275059, 12411530093). M.P.C. and S.S.D. were supported by the NCEO TerraFIRMA, NERC LSO3 (NE/V011863/1) and ESA OREGANO (4000137112/22/I-AG) projects. G.M. received funding from the NERC MeteorStrat (NE/R011222/1) and from NCAS via the NERC ACSIS (NE/N018001/1). S.H. was supported by the Leeds-York-Hull NERC DTP Panorama (NE/S007458/1). The TOMCAT model simulations were performed on the UK Archer2 and Leeds ARC HPC systems. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
Author information
Authors and Affiliations
Contributions
X.Z. and M.P.C. designed the study. M.P.C., X.Z., and W.F. designed and performed TOMCAT simulations. X.Z. analysed the data and produced the figures. X.Z., M.P.C., and H.C.P. drafted the initial text. S.S.D., S.H., G.M., L.M., M.L.S. and Q.C. contributed substantially to the interpretation of findings.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Nora Zannoni and Alireza Bahadori. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhou, X., Chen, Q., Feng, W. et al. Residence time of Hunga stratospheric water vapour perturbation quantified at 9 years. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03216-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03216-5


