Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Residence time of Hunga stratospheric water vapour perturbation quantified at 9 years
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

Residence time of Hunga stratospheric water vapour perturbation quantified at 9 years

  • Xin Zhou  ORCID: orcid.org/0000-0001-5311-00921,2,
  • Quanliang Chen1,
  • Wuhu Feng  ORCID: orcid.org/0000-0002-9907-91202,3,
  • Saffron Heddell2,
  • Sandip S. Dhomse  ORCID: orcid.org/0000-0003-3854-53832,4,
  • Graham Mann  ORCID: orcid.org/0000-0003-1746-28372,3,
  • Hugh C. Pumphrey  ORCID: orcid.org/0000-0003-0747-14575,
  • Luis Millán  ORCID: orcid.org/0000-0002-9509-90956,
  • Michelle L. Santee  ORCID: orcid.org/0000-0002-9466-72576 &
  • …
  • Martyn P. Chipperfield  ORCID: orcid.org/0000-0002-6803-41492,4 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 867 Accesses

  • 10 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric chemistry
  • Atmospheric dynamics
  • Climate and Earth system modelling

Abstract

The January 2022 eruption of the Hunga volcano (20∘S) injected 150 Tg of water vapour into the middle atmosphere, leading to an increase in the stratospheric water burden of 10%, unprecedented in the observational record. In the first two years post eruption the stratospheric burden hardly changed, leaving the residence time of volcanically injected water vapour, a key control on its climate impact, uncertain. Here, using satellite observations, we show a substantial decline from 2024 to early 2025, the largest drop since the eruption. Comparison with 3-D numerical model simulations shows that the long-term removal of the Hunga water has now entered a new phase, with stratosphere-troposphere exchange playing an increasingly important role, exceeding Antarctic dehydration in 2024. We estimate that the additional stratospheric water vapour is now decaying steadily with an e-folding time of 3 years and will reach the observed pre-Hunga range of variability around 2030.

Similar content being viewed by others

Strong persistent cooling of the stratosphere after the Hunga eruption

Article Open access 21 August 2024

Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption

Article Open access 22 October 2022

The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022

Article Open access 19 November 2022

Data availability

MLS satellite data, including the version 5 H2O data used in this paper49, are publicly available at https://disc.gsfc.nasa.gov. TOMCAT model outputs are available on request from the corresponding authors. All of the pre-processed model data (for example, monthly mean water vapour mass averaged globally and over Antarctica from TOMCAT and water vapour mass interpolated onto the MLS vertical coordinates) are available at Zenodo (https://doi.org/10.5281/zenodo.18193651)50.

Code availability

Code from the TOMCAT CTM is available on suitable request from Martyn Chipperfield. The code used to generate all of the figures in this analysis is available at Zenodo (https://doi.org/10.5281/zenodo.18193651)50.

References

  1. Forster, P. M. D. F. & Shine, K. P. Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett. 29, 10–1–10–4 (2002).

    Google Scholar 

  2. Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    Google Scholar 

  3. Millán, L. et al. Hunga Tonga-Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett. 49, e2022GL099381 (2022).

    Google Scholar 

  4. Evan, S. et al. Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga eruption. Science 382, eadg2551 (2023).

    Google Scholar 

  5. Santee, M. L. et al. Strong evidence of heterogeneous processing on stratospheric sulfate aerosol in the extrapolar Southern Hemisphere following the 2022 Hunga Tonga-Hunga Ha’apai eruption. J. Geophys. Res.: Atmospheres 128, e2023JD039169 (2023).

  6. Wilmouth, D. M., Østerstrøm, F. F., Smith, J. B., Anderson, J. G. & Salawitch, R. J. Impact of the Hunga Tonga volcanic eruption on stratospheric composition. Proc. Natl. Acad. Sci. 120, e2301994120 (2023).

    Google Scholar 

  7. Zhu, Y. et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ. 3, 248 (2022).

    Google Scholar 

  8. Coy, L. et al. Stratospheric circulation changes associated with the Hunga Tonga-Hunga Ha’apai eruption. Geophys. Res. Lett. 49, e2022GL100982 (2022).

    Google Scholar 

  9. Schoeberl, M. R. et al. Analysis and impact of the Hunga Tonga-Hunga Ha’apai stratospheric water vapor plume. Geophys. Res. Lett. 49, e2022GL100248 (2022).

    Google Scholar 

  10. Sellitto, P. et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ. 3, 288 (2022).

    Google Scholar 

  11. Yu, W. et al. Mesospheric temperature and circulation response to the Hunga Tonga-Hunga-Ha’apai volcanic eruption. J. Geophys. Res.: Atmospheres 128, e2023JD039636 (2023).

  12. Jenkins, S., Smith, C., Allen, M. & Grainger, R. Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 ∘C. Nat. Clim. Change 13, 127–129 (2023).

    Google Scholar 

  13. Schoeberl, M. R. et al. Evolution of the climate forcing during the two years after the Hunga Tonga-Hunga Ha’apai eruption. J. Geophys. Res.: Atmospheres 129, e2024JD041296 (2024).

  14. Stenchikov, G., Ukhov, A. & Osipov, S. Modeling the radiative forcing and atmospheric temperature perturbations caused by the 2022 Hunga volcano explosion. J. Geophys. Res.: Atmospheres 130, e2024JD041940 (2025).

  15. Vömel, H., Oltmans, S., Hofmann, D., Deshler, T. & Rosen, J. The evolution of the dehydration in the Antarctic stratospheric vortex. J. Geophys. Res.: Atmospheres 100, 13919–13926 (1995).

  16. Holton, J. R. et al. Stratosphere-troposphere exchange. Rev. Geophys. 33, 403–439 (1995).

    Google Scholar 

  17. Nedoluha, G. E. et al. Water vapor measurements in the mesosphere from Mauna Loa over solar cycle 23. J. Geophys. Res.: Atm. 114, D23303 (2009).

  18. Millán, L. et al. The evolution of the Hunga hydration in a moistening stratosphere. Geophys. Res. Lett. 51, e2024GL110841 (2024).

    Google Scholar 

  19. Zhou, X. et al. Antarctic vortex dehydration in 2023 as a substantial removal pathway for Hunga Tonga-Hunga Ha’apai water vapor. Geophys. Res. Lett. 51, e2023GL107630 (2024).

    Google Scholar 

  20. Khaykin, S. et al. Global perturbation of stratospheric water and aerosol burden by Hunga eruption. Commun. Earth Environ. 3, 316 (2022).

    Google Scholar 

  21. Zhuo, Z. et al. Comparing multi-model ensemble simulations with observations and decadal projections of upper atmospheric variations following the Hunga eruption. Atmos. Chem. Phys. 25, 13161–13176 (2025).

    Google Scholar 

  22. Waters, J. W. et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 44, 1106–1121 (2006).

    Google Scholar 

  23. Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E. & Forster, P. Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res.: Atmospheres 111, D2312 (2006).

  24. Urban, J., Lossow, S., Stiller, G. & Read, W. Another drop in water vapor. Eos, Trans. Am. Geophys. Union 95, 245–246 (2014).

    Google Scholar 

  25. Chipperfield, M. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorological Soc.: A J. Atmos. Sci., Appl. Meteorol. Phys. Oceanogr. 132, 1179–1203 (2006).

  26. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorological Soc. 146, 1999–2049 (2020).

  27. Mote, P. W. et al. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res.: Atmospheres 101, 3989–4006 (1996).

  28. Manney, G. L. et al. Siege in the southern stratosphere: Hunga Tonga-Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophys. Res. Lett. 50, e2023GL103855 (2023).

    Google Scholar 

  29. Santee, M. L. et al. The influence of stratospheric hydration from the Hunga eruption on chemical processing in the 2023 Antarctic vortex. J. Geophys. Res.: Atmospheres 129, e2023JD040687 (2024).

  30. Wohltmann, I., Santee, M. L., Manney, G. L. & Millán, L. F. The chemical effect of increased water vapor from the Hunga Tonga-Hunga Ha’apai eruption on the Antarctic ozone hole. Geophys. Res. Lett. 51, e2023GL106980 (2024).

    Google Scholar 

  31. Pitts, M. C., Poole, L. R., Dörnbrack, A. & Thomason, L. W. The 2009-2010 Arctic polar stratospheric cloud season: a CALIPSO perspective. Atmos. Chem. Phys. 11, 2161–2177 (2011).

    Google Scholar 

  32. Khaykin, S. M. et al. Arctic stratospheric dehydration – Part 1: Unprecedented observation of vertical redistribution of water. Atmos. Chem. Phys. 13, 11503–11517 (2013).

    Google Scholar 

  33. Manney, G. L. & Lawrence, Z. D. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss. Atmos. Chem. Phys. 16, 15371–15396 (2016).

    Google Scholar 

  34. Manney, G. L. et al. Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett. 47, e2020GL089063 (2020).

    Google Scholar 

  35. Newman, P. A. et al. Record high March 2024 Arctic total column ozone. Geophys. Res. Lett. 51, e2024GL110924 (2024).

    Google Scholar 

  36. Lee, S. H., Butler, A. H. & Manney, G. L. Two major sudden stratospheric warmings during winter 2023/2024. Weather 80, 45–53 (2025).

    Google Scholar 

  37. Basha, G. et al. Impact of Hunga Tonga-Hunga Ha’apai volcanic eruption on stratospheric water vapour, temperature, and ozone. Remote Sens. 15, 3602 (2023).

    Google Scholar 

  38. Nedoluha, G. E. et al. The spread of the Hunga Tonga H2O plume in the middle atmosphere over the first two years since eruption. J. Geophys. Res.: Atmospheres 129, e2024JD040907 (2024).

  39. Manney, G. L., Zurek, R. W., O’Neill, A. & Swinbank, R. On the motion of air through the stratospheric polar vortex. J. Atmos. Sci. 51, 2973 – 2994 (1994).

    Google Scholar 

  40. Fleming, E. L., Newman, P. A., Liang, Q. & Oman, L. D. Stratospheric temperature and ozone impacts of the Hunga Tonga-Hunga Ha’apai water vapor injection. J. Geophys. Res.: Atmospheres 129, e2023JD039298 (2024).

  41. Kuchar, A. et al. Modulation of the northern polar vortex by the Hunga Tonga–Hunga Ha’apai eruption and the associated surface response. Atmos. Chem. Phys. 25, 3623–3634 (2025).

    Google Scholar 

  42. Schoeberl, M. R., Toohey, M., Wang, Y. & Ueyama, R. Stratospheric injection lifetimes. J. Geophys. Res.:Atmospheres 130, e2025JD043928 (2025).

    Google Scholar 

  43. Toohey, M., Jia, Y., Khanal, S. & Tegtmeier, S. Stratospheric residence time and the lifetime of volcanic stratospheric aerosols. Atmos. Chem. Phys. 25, 3821–3839 (2025).

    Google Scholar 

  44. Livesey, N. J. et al. Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) version 5.0x level 2 and 3 data quality and description document. Tech. Rep. JPL D-105336 Rev. B, NASA Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, 91109-8099 (2022). https://mls.jpl.nasa.gov.

  45. Lambert, A. et al. Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res 112, D24S35 (2007).

    Google Scholar 

  46. Khosrawi, F. et al. The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites. Atmos. Meas. Tech. 11, 4435–4463 (2018).

    Google Scholar 

  47. Livesey, N. J. et al. Investigation and amelioration of long-term instrumental drifts in water vapor and nitrous oxide measurements from the Aura Microwave Limb Sounder (MLS) and their implications for studies of variability and trends. Atmos. Chem. Phys. 21, 15409–15430 (2021).

    Google Scholar 

  48. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. methods 17, 261–272 (2020).

    Google Scholar 

  49. Lambert, A., Read, W. & Livesey, N. MLS/Aura level 2 water vapor (H2O) mixing ratio v005 (2020). Accessed 2025-07-28.

  50. Zhou, X. Data and code for “Residence time of Hunga stratospheric water vapour perturbation quantified at 9 years” [data set]. Zenodo https://doi.org/10.5281/zenodo.18193651 (2025).

Download references

Acknowledgements

X.Z. and Q.C. acknowledge funding from the National Natural Science Foundation of China (U2442210, 42275059, 12411530093). M.P.C. and S.S.D. were supported by the NCEO TerraFIRMA, NERC LSO3 (NE/V011863/1) and ESA OREGANO (4000137112/22/I-AG) projects. G.M. received funding from the NERC MeteorStrat (NE/R011222/1) and from NCAS via the NERC ACSIS (NE/N018001/1). S.H. was supported by the Leeds-York-Hull NERC DTP Panorama (NE/S007458/1). The TOMCAT model simulations were performed on the UK Archer2 and Leeds ARC HPC systems. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Author information

Authors and Affiliations

  1. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

    Xin Zhou & Quanliang Chen

  2. School of Earth and Environment, University of Leeds, Leeds, UK

    Xin Zhou, Wuhu Feng, Saffron Heddell, Sandip S. Dhomse, Graham Mann & Martyn P. Chipperfield

  3. National Centre for Atmospheric Science, University of Leeds, Leeds, UK

    Wuhu Feng & Graham Mann

  4. National Centre for Earth Observation, University of Leeds, Leeds, UK

    Sandip S. Dhomse & Martyn P. Chipperfield

  5. School of GeoSciences, University of Edinburgh, Edinburgh, UK

    Hugh C. Pumphrey

  6. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    Luis Millán & Michelle L. Santee

Authors
  1. Xin Zhou
    View author publications

    Search author on:PubMed Google Scholar

  2. Quanliang Chen
    View author publications

    Search author on:PubMed Google Scholar

  3. Wuhu Feng
    View author publications

    Search author on:PubMed Google Scholar

  4. Saffron Heddell
    View author publications

    Search author on:PubMed Google Scholar

  5. Sandip S. Dhomse
    View author publications

    Search author on:PubMed Google Scholar

  6. Graham Mann
    View author publications

    Search author on:PubMed Google Scholar

  7. Hugh C. Pumphrey
    View author publications

    Search author on:PubMed Google Scholar

  8. Luis Millán
    View author publications

    Search author on:PubMed Google Scholar

  9. Michelle L. Santee
    View author publications

    Search author on:PubMed Google Scholar

  10. Martyn P. Chipperfield
    View author publications

    Search author on:PubMed Google Scholar

Contributions

X.Z. and M.P.C. designed the study. M.P.C., X.Z., and W.F. designed and performed TOMCAT simulations. X.Z. analysed the data and produced the figures. X.Z., M.P.C., and H.C.P. drafted the initial text. S.S.D., S.H., G.M., L.M., M.L.S. and Q.C. contributed substantially to the interpretation of findings.

Corresponding author

Correspondence to Xin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Nora Zannoni and Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Support Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, Q., Feng, W. et al. Residence time of Hunga stratospheric water vapour perturbation quantified at 9 years. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03216-5

Download citation

  • Received: 05 September 2025

  • Accepted: 12 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03216-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing