Abstract
Palaeoceanographic records spanning the Oligocene provide insights into Antarctic ice-sheet dynamics in a world warmer-than-today, allowing us to improve future climate projections linked to global warming. Here, we present a high-resolution multi-proxy record from ODP Site 689 (Maud Rise, Southern Ocean), to investigate the short-term Antarctic ice-sheet variability during the late Oligocene. Our oxygen isotope composition of sea water record reflects large, obliquity-paced ice volume fluctuations from 26.2 to 25.2 Ma. These fluctuations would have resulted in changes in the types of rocks eroded as the Antarctic ice-sheet advanced/retreated. Indeed, the radiogenic isotopic compositions of neodymium and lead co-vary with the oxygen isotopes for most of the record and identify changes in sediment provenance and weathering rates linked to advances and retreats of the Antarctic ice-sheet. At the same time, the stable incongruent lead isotope signal observed confirms the presence of a major East Antarctic ice-sheet during the late Oligocene.
Similar content being viewed by others
Data availability
All data relevant to this study are available in the Supplementary Data files and in the data repository PANGAEA110 at https://doi.org/10.1594/PANGAEA.988411111 and https://doi.org/10.1594/PANGAEA.988416112.
References
Alley, R. B. et al. Abrupt climate change. Science 299, 2005–2010 (2003).
Intergovernmental Panel on Climate Change (IPCC) in Climate Change 2021—The Physical Science Basis. 1211–1362 (Cambridge University Press, 2023).
Rignot, E., Velicogna, I., Van Den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, https://doi.org/10.1029/2011GL046583 (2011).
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).
Zachos, J. C., Quinn, T. M. & Salamy, K. A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11, 251–266 (1996).
Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6, 33–52 (1991).
Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G. The Geologic Time Scale 2012. (Elsevier, 2012).
Lyle, M., Gibbs, S., Moore, T. C. & Rea, D. K. Late Oligocene initiation of the Antarctic circumpolar current: Evidence from the South Pacific. Geology 35, 691–694 (2007).
Pfuhl, H. A. & McCave, I. N. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth. Planet. Sci. Lett. 235, 715–728 (2005).
Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys Res. 82, 3843–3860 (1977).
Barker, P. F. & Thomas, E. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci. Rev. 66, 143–162 (2004).
Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science (1979) 334, 1261–1264 (2011).
Anderson, L. B., Hönisch, B., Coxall, H. K. & Bolge, L. Atmospheric CO2 estimates for the late Oligocene and early Miocene using multi-species cross-calibrations of Boron isotopes. Paleoceanogr. Paleoclimatol 39, e2022PA004569 (2024).
Cenozoic CO2 Proxy Integration Project (CenCO 2PIP) Consortium. Toward a Cenozoic history of atmospheric CO2. Science 382, eadi5177 (2023).
Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
Tremblin, M., Hermoso, M. & Minoletti, F. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic. Proc. Natl. Acad. Sci. USA 113, 11782–11787 (2016).
Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).
Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s Orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).
Levy, R. H. et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nat. Geosci. 12, 132–137 (2019).
Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001).
Salabarnada, A. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica-Part 1: Insights from late Oligocene astronomically paced contourite sedimentation. Clim 14, 991–1014 (2018).
Galeotti, S. et al.Antarctic ice sheet variability across the Eocene-Oligocene boundary climate transition. Science 352,76–80 (2016).
Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292, 274–278 (2001).
Billups, K., Pälike, H., Channell, J. E. T., Zachos, J. C. & Shackleton, N. J. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett. 224, 33–44 (2004).
Pekar, S. & Miller, K. G. New Jersey Oligocene ‘Icehouse’ sequences (ODP Leg 150X) correlated with global 18O and Exxon eustatic records. Geology 24, 567–570 (1996).
Wade, B. S. & Pälike, H. Oligocene climate dynamics. Paleoceanography 19, 1–16 (2004).
Liebrand, D. et al. Evolution of the early Antarctic ice ages. Proc. Natl Acad. Sci. USA 114, 3867–3872 (2017).
Brzelinski, S. et al. Large obliquity-paced Antarctic ice-volume fluctuations suggest melting by atmospheric and ocean warming during late Oligocene. Commun. Earth Environ. 4, 222 (2023).
Liebrand, D. et al. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth Planet. Sci. Lett. 450, 392–405 (2016).
Hauptvogel, D. W., Pekar, S. F. & Pincay, V. Evidence for a heavily glaciated Antarctica during the late Oligocene “warming” (27.8–24.5 Ma): Stable isotope records from ODP Site 690. Paleoceanography 32, 384–396 (2017).
Pollard, D. & DeConto, R. M. Hysteresis in Cenozoic Antarctic ice-sheet variations. Glob. Planet. Change 45, 9–21 (2005).
Lear, C. H., Rosenthal, Y. & Slowey, N. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochim. Cosmochim. Acta. 66, 3375–3387 (2002).
Billups, K. & Schrag, D. P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17, (2002).
Goldstein, S. L. & Hemming, S. R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise Geochem. 6–9, 453–489 (2003).
Elderfield, H. The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of London. Ser. A, Math. Phys. Sci. 325, 105–126 (1988).
Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).
Piepgras, D. J., Wasserburg, G. J. & Dasch, E. J. The isotopic composition of Nd in different ocean masses. Earth Planet. Sci. Lett. 45, 223–236 (1979).
Pierce, E. L. et al. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition. Earth Planet. Sci. Lett. 478, 1–13 (2017).
Cook, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013).
Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).
Henderson, G. M. & Maier-Reimer, E. Advection and removal of 210Pb and stable Pb isotopes in the oceans: a general circulation model study. Geochim. Cosmochim. Acta 66, 257–272 (2002).
Broecker, W. S. & Peng, T. H. Tracers in the Sea. (Lamont-Doherty Geological Observatory, Palisades, New York, 1982).
van de Flierdt, T., Hemming, S. R., Goldstein, S. L. & Abouchami, W. Radiogenic isotope fingerprint of Wilkes Land–Adélie Coast Bottom Water in the circum-Antarctic Ocean. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL026020 (2006).
Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C. & Eisenhauer, A. Efficient extraction of past seawater Pb and Nd isotope signatures from Southern Ocean sediments. Geochem. Geophys. Geosyst. 22, e2020GC009287 (2021).
Basak, C., Martin, E. E. & Kamenov, G. D. Seawater Pb isotopes extracted from Cenozoic marine sediments. Chem. Geol. 286, 94–108 (2011).
Gutjahr, M. et al. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 242, 351–370 (2007).
Von Blanckenburg, F. & Nägler, T. F. Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water. Paleoceanography 16, 424–434 (2001).
Gutjahr, M., Frank, M., Halliday, A. N. & Keigwin, L. D. Retreat of the Laurentide ice sheet tracked by the isotopic composition of Pb in western North Atlantic seawater during termination 1. Earth Planet. Sci. Lett. 286, 546–555 (2009).
Crocket, K. C., Vance, D., Foster, G. L., Richards, D. A. & Tranter, M. Continental weathering fluxes during the last glacial/interglacial cycle: insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW Atlantic. Quat. Sci. Rev. 38, 89–99 (2012).
Locarnini, R. A. et al. World Ocean Atlas 2023, Volume 1: Temperature. (NOAA Atlas NESDIS; 89, 2024).
Bohaty, S. M., Zachos, J. C. & Delaney, M. L. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene–Oligocene transition. Earth Planet. Sci. Lett. 317–318, 251–261 (2012).
Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009).
Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6.20, eaaz1346 (2020).
DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008).
Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl. Acad. Sci. USA 113, 3459–3464 (2016).
Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).
Wilson, D. S. et al. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 24–34 (2012).
Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J. & Ferraccioli, F. Long-term increase in Antarctic ice sheet vulnerability driven by bed topography evolution. Geophys. Res. Lett. 47.20, e2020GL090003 (2020).
Wilson, D. S., Pollard, D., Deconto, R. M., Jamieson, S. S. R. & Luyendyk, B. P. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys. Res. Lett. 40, 4305–4309 (2013).
van Peer, T. E. et al. Eccentricity pacing and rapid termination of the early Antarctic ice ages. Nat. Commun. 15, 1–10 (2024).
Boulila, S. et al. Towards a robust and consistent middle Eocene astronomical timescale. Earth Planet. Sci. Lett. 486, 94–107 (2018).
Dunbar, G. B., Naish, T. R., Barrett, P. J., Fielding, C. R. & Powell, R. D. Constraining the amplitude of late Oligocene bathymetric changes in Western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (1) Implications for glacimarine sequence stratigraphic models. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 50–65 (2008).
Barker, P. R. & Kennett, J. P. Shipboard Scientific Party 2 HOLE 689 A HOLE 689 C. Proc. ODP, Init. Repts., 113: College Station, TX (Ocean Drilling Program, 1988).
Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 1–10 (2020).
Scher, H. D. & Martin, E. E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett. 228, 391–405 (2004).
Stichel, T., Frank, M., Rickli, J. & Haley, B. A. The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. Earth Planet. Sci. Lett. 317–318, 282–294 (2012).
Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34, 441–444 (2006).
Evangelinos, D. et al. Late Oligocene-Miocene proto-Antarctic circumpolar current dynamics off the Wilkes Land margin, East Antarctica. Glob. Planet. Change 191, 103221 (2020).
McCave, I. N., Thornalley, D. J. R. & Hall, I. R. Relation of sortable silt grain-size to deep-sea current speeds: calibration of the ‘Mud Current Meter’. Deep Sea Res. Part I: Oceanogr. Res. Pap. 127, 1–12 (2017).
Wu, S. et al. Orbital- and millennial-scale Antarctic circumpolar current variability in Drake Passage over the past 140,000 years. Nat. Commun. 12, 1–9 (2021).
Süfke, F. et al. Arctic drainage of Laurentide Ice Sheet meltwater throughout the past 14,700 years. Commun. Earth Environ. 3, 1–11 (2022).
Kurzweil, F., Gutjahr, M., Vance, D. & Keigwin, L. Authigenic Pb isotopes from the Laurentian Fan: changes in chemical weathering and patterns of North American freshwater runoff during the last deglaciation. Earth Planet. Sci. Lett. 299, 458–465 (2010).
Roy, M., van de Flierdt, T., Hemming, S. R. & Goldstein, S. L. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean. Chem. Geol. 244, 507–519 (2007).
Robinson, S. et al. Global continental and marine detrital εNd: an updated compilation for use in understanding marine Nd cycling. Chem. Geol. 567, 120119 (2021).
Groenewald, P. B., Moyesb, A. B., Granthamc, G. H. & Krynauw’, J. R. East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land. Precambrian Res. 75, 23–250 (1995).
Foster, G. L. & Vance, D. Negligible glacial-interglacial variation in continental chemical weathering rates. Nature 444, 918–921 (2006).
Parker, R. L. et al. Laurentide ice sheet extent over the last 130 thousand years traced by the Pb isotope signature of weathering inputs to the Labrador Sea. Quat. Sci. Rev. 287, 107564 (2022).
Basak, C. & Martin, E. E. Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition. Nat. Geosci. 6, 121–124 (2013).
Erel, Y., Harlavan, Y. & Blum, J. D. Lead isotope systematics of granitoid weathering. Geochim. Cosmochim. Acta 58, 5299–5306 (1994).
Dausmann, V., Gutjahr, M., Frank, M., Kouzmanov, K. & Schaltegger, U. Experimental evidence for mineral-controlled release of radiogenic Nd, Hf and Pb isotopes from granitic rocks during progressive chemical weathering. Chem. Geol. 507, 64–84 (2019).
Harlavan, Y. & Erel, Y. The release of Pb and REE from granitoids by the dissolution of accessory phases. Geochim. Cosmochim. Acta 66, 837–848 (2002).
Middelburg, J. J., van der Weijden, C. H. & Woittiez, J. R. W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol. 68, 253–273 (1988).
Flowerdew, M. J. et al. Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar. Chem. Geol. 292–293, 88–102 (2012).
McCave, I. N. & Andrews, J. T. Distinguishing current effects in sediments delivered to the ocean by ice. I. Principles, methods and examples. Quat. Sci. Rev. 212, 92–107 (2019).
Wright, N. M., Scher, H. D., Seton, M., Huck, C. E. & Duggan, B. D. No change in Southern Ocean circulation in the Indian Ocean from the Eocene through late Oligocene. Paleoceanogr. Paleoclimatol. 33, 152–167 (2018).
Florindo, F. & Roberts, A. P. Eocene-Oligocene magnetobiochronology of ODP sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Bull. Geol. Soc. Am. 117, 46–66 (2005).
Coxall, H. K. & Wilson, P. A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: insights into global carbon cycling. Paleoceanography 26, https://doi.org/10.1029/2010PA002021 (2011).
Beddow, H. M., Liebrand, D., Sluijs, A., Wade, B. S. & Lourens, L. J. Global change across the Oligocene-Miocene transition: High-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean). Paleoceanography 31, 81–97 (2016).
Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography 30, 1437–1454 (2015).
Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem., Geophys. Geosys. 4, https://doi.org/10.1029/2003GC000559 (2003).
Bian, N. & Martin, P. A. Investigating the fidelity of Mg/Ca and other elemental data from reductively cleaned planktonic foraminifera. Paleoceanography 25, https://doi.org/10.1029/2009PA001796 (2010).
Greaves, M. et al. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochem. Geophys. Geosyst. 9, https://doi.org/10.1029/2008GC001974 (2008).
Healey, S. L., Thunell, R. C. & Corliss, B. H. The Mg/Ca-temperature relationship of benthic foraminiferal calcite: new core-top calibrations in the <4 °C temperature range. Earth Planet. Sci. Lett. 272, 523–530 (2008).
Dickson, J. A. D. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science (1979) 298, 1222–1224 (2002).
Rausch, S., Böhm, F., Bach, W., Klügel, A. & Eisenhauer, A. Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years. Earth Planet. Sci. Lett. 362, 215–224 (2013).
Shackleton, N. J. Attainment of Isotopic Equilibrium Between Ocean Water and the Benthonic Foraminifera Genus Uvigerina: Isotopic Changes in the Ocean During the Last Glacial Cycle. Colloque international du CNRS, 219, 203–210 (1974).
Hut, G. Consultant’s Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations. (International Atomic Energy Agency, Vienna (Austria), 1987).
Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Struve, T. et al. Neodymium isotopes and concentrations in aragonitic scleractinian cold-water coral skeletons—modern calibration and evaluation of palaeo-applications. Chem. Geol. 453, 146–168 (2017).
Pin, C. & Zalduegui, J. F. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).
Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).
Goldstein, S. J. & Jacobsen, S. B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1988).
Depaolo, D. J. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–196 (1981).
Lugmair, G. W. & Galer, S. J. G. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta 56, 1673–1694 (1992).
Baker, J., Peate, D., Waight, T. & Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 211, 275–303 (2004).
Knust, R. P. Polar Research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facilit. 3, A119 (2017).
Felden, J. et al. PANGAEA—data publisher for Earth & Environmental Science. Sci. Data 10, 347 (2023).
Brzelinski, S., Fischer, A. & Friedrich, O. Late Oligocene (26.2-25.2 Ma) stable oxygen isotopes and Mg/Ca of benthic foraminifera from ODP Site 113-689 [dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.988411 (2026).
Creac’h, L., Brzelinski, S., Gutjahr, M. & Lippold, J. Late Oligocene (26.2-25.2 Ma) radiogenic isotopes (Nd and Pb) from ODP Site 113-689 [dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.988416 (2026).
Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).
Acknowledgements
This research used samples provided by the Ocean Drilling Programme (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under the management of Joint Oceanographic Institutions (JOI), Inc. We acknowledge the AWI sediment core repository for providing the core-top samples. We are grateful to Daniela Müller and André Bahr for the grain-size measurements, and to Lukas Gerber for his support with the Pb concentration measurements. L.C. acknowledges Huang Huang, Moritz Hallmaier and Michael Bollen for helpful discussions. We would like to thank the editor and the two reviewers for their constructive comments, which greatly improved this manuscript. This project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—428548445. We acknowledge financial support by Heidelberg University for the publication fee.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
L.C. performed the analyses, the visualisation and wrote the original draft. L.C., S.B., M.G. and A.F. generated the data. J.L., M.F. and O.F. conceived the study. All authors participated in the methodology, the investigation, and all reviewed and edited the manuscript and approved the final version.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editors: Ning Zhao, Nicola Colombo and Aliénor Lavergne. [A peer review file is available].
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Creac’h, L., Brzelinski, S., Lippold, J. et al. Short-term Antarctic ice-sheet dynamics during the late Oligocene. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03217-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03217-4


