Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Short-term Antarctic ice-sheet dynamics during the late Oligocene
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Short-term Antarctic ice-sheet dynamics during the late Oligocene

  • Layla Creac’h  ORCID: orcid.org/0000-0001-8686-312X1,
  • Swaantje Brzelinski1,
  • Jörg Lippold  ORCID: orcid.org/0000-0003-1976-50651,
  • Marcus Gutjahr  ORCID: orcid.org/0000-0003-2556-26192,
  • Martin Frank  ORCID: orcid.org/0000-0002-8606-44212,
  • Alexa Fischer  ORCID: orcid.org/0009-0005-2313-05741 &
  • …
  • Oliver Friedrich  ORCID: orcid.org/0000-0002-6046-75131 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 744 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Marine chemistry
  • Palaeoceanography

Abstract

Palaeoceanographic records spanning the Oligocene provide insights into Antarctic ice-sheet dynamics in a world warmer-than-today, allowing us to improve future climate projections linked to global warming. Here, we present a high-resolution multi-proxy record from ODP Site 689 (Maud Rise, Southern Ocean), to investigate the short-term Antarctic ice-sheet variability during the late Oligocene. Our oxygen isotope composition of sea water record reflects large, obliquity-paced ice volume fluctuations from 26.2 to 25.2 Ma. These fluctuations would have resulted in changes in the types of rocks eroded as the Antarctic ice-sheet advanced/retreated. Indeed, the radiogenic isotopic compositions of neodymium and lead co-vary with the oxygen isotopes for most of the record and identify changes in sediment provenance and weathering rates linked to advances and retreats of the Antarctic ice-sheet. At the same time, the stable incongruent lead isotope signal observed confirms the presence of a major East Antarctic ice-sheet during the late Oligocene.

Similar content being viewed by others

Climatic and tectonic drivers of late Oligocene Antarctic ice volume

Article 15 September 2022

Oligocene deep ocean oxygen isotope variations primarily driven by temperature

Article Open access 07 January 2026

Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures

Article 13 May 2021

Data availability

All data relevant to this study are available in the Supplementary Data files and in the data repository PANGAEA110 at https://doi.org/10.1594/PANGAEA.988411111 and https://doi.org/10.1594/PANGAEA.988416112.

References

  1. Alley, R. B. et al. Abrupt climate change. Science 299, 2005–2010 (2003).

    Google Scholar 

  2. Intergovernmental Panel on Climate Change (IPCC) in Climate Change 2021—The Physical Science Basis. 1211–1362 (Cambridge University Press, 2023).

  3. Rignot, E., Velicogna, I., Van Den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, https://doi.org/10.1029/2011GL046583 (2011).

  4. Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).

    Google Scholar 

  5. Zachos, J. C., Quinn, T. M. & Salamy, K. A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11, 251–266 (1996).

    Google Scholar 

  6. Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. Miocene isotope reference section, Deep Sea Drilling Project Site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6, 33–52 (1991).

    Google Scholar 

  7. Gradstein, F., Ogg, J., Schmitz, M. & Ogg, G. The Geologic Time Scale 2012. (Elsevier, 2012).

  8. Lyle, M., Gibbs, S., Moore, T. C. & Rea, D. K. Late Oligocene initiation of the Antarctic circumpolar current: Evidence from the South Pacific. Geology 35, 691–694 (2007).

    Google Scholar 

  9. Pfuhl, H. A. & McCave, I. N. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth. Planet. Sci. Lett. 235, 715–728 (2005).

  10. Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J. Geophys Res. 82, 3843–3860 (1977).

    Google Scholar 

  11. Barker, P. F. & Thomas, E. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci. Rev. 66, 143–162 (2004).

    Google Scholar 

  12. Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science (1979) 334, 1261–1264 (2011).

    Google Scholar 

  13. Anderson, L. B., Hönisch, B., Coxall, H. K. & Bolge, L. Atmospheric CO2 estimates for the late Oligocene and early Miocene using multi-species cross-calibrations of Boron isotopes. Paleoceanogr. Paleoclimatol 39, e2022PA004569 (2024).

    Google Scholar 

  14. Cenozoic CO2 Proxy Integration Project (CenCO 2PIP) Consortium. Toward a Cenozoic history of atmospheric CO2. Science 382, eadi5177 (2023).

  15. Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Google Scholar 

  16. Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Google Scholar 

  17. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Google Scholar 

  18. Tremblin, M., Hermoso, M. & Minoletti, F. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic. Proc. Natl. Acad. Sci. USA 113, 11782–11787 (2016).

    Google Scholar 

  19. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Google Scholar 

  20. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s Orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Google Scholar 

  21. Levy, R. H. et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nat. Geosci. 12, 132–137 (2019).

    Google Scholar 

  22. Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001).

  23. Salabarnada, A. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica-Part 1: Insights from late Oligocene astronomically paced contourite sedimentation. Clim 14, 991–1014 (2018).

    Google Scholar 

  24. Galeotti, S. et al.Antarctic ice sheet variability across the Eocene-Oligocene boundary climate transition. Science 352,76–80 (2016).

    Google Scholar 

  25. Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292, 274–278 (2001).

    Google Scholar 

  26. Billups, K., Pälike, H., Channell, J. E. T., Zachos, J. C. & Shackleton, N. J. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett. 224, 33–44 (2004).

    Google Scholar 

  27. Pekar, S. & Miller, K. G. New Jersey Oligocene ‘Icehouse’ sequences (ODP Leg 150X) correlated with global 18O and Exxon eustatic records. Geology 24, 567–570 (1996).

    Google Scholar 

  28. Wade, B. S. & Pälike, H. Oligocene climate dynamics. Paleoceanography 19, 1–16 (2004).

    Google Scholar 

  29. Liebrand, D. et al. Evolution of the early Antarctic ice ages. Proc. Natl Acad. Sci. USA 114, 3867–3872 (2017).

    Google Scholar 

  30. Brzelinski, S. et al. Large obliquity-paced Antarctic ice-volume fluctuations suggest melting by atmospheric and ocean warming during late Oligocene. Commun. Earth Environ. 4, 222 (2023).

  31. Liebrand, D. et al. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth Planet. Sci. Lett. 450, 392–405 (2016).

    Google Scholar 

  32. Hauptvogel, D. W., Pekar, S. F. & Pincay, V. Evidence for a heavily glaciated Antarctica during the late Oligocene “warming” (27.8–24.5 Ma): Stable isotope records from ODP Site 690. Paleoceanography 32, 384–396 (2017).

    Google Scholar 

  33. Pollard, D. & DeConto, R. M. Hysteresis in Cenozoic Antarctic ice-sheet variations. Glob. Planet. Change 45, 9–21 (2005).

    Google Scholar 

  34. Lear, C. H., Rosenthal, Y. & Slowey, N. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochim. Cosmochim. Acta. 66, 3375–3387 (2002).

  35. Billups, K. & Schrag, D. P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17, (2002).

  36. Goldstein, S. L. & Hemming, S. R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise Geochem. 6–9, 453–489 (2003).

    Google Scholar 

  37. Elderfield, H. The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of London. Ser. A, Math. Phys. Sci. 325, 105–126 (1988).

    Google Scholar 

  38. Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    Google Scholar 

  39. Piepgras, D. J., Wasserburg, G. J. & Dasch, E. J. The isotopic composition of Nd in different ocean masses. Earth Planet. Sci. Lett. 45, 223–236 (1979).

    Google Scholar 

  40. Pierce, E. L. et al. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition. Earth Planet. Sci. Lett. 478, 1–13 (2017).

    Google Scholar 

  41. Cook, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013).

    Google Scholar 

  42. Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).

    Google Scholar 

  43. Henderson, G. M. & Maier-Reimer, E. Advection and removal of 210Pb and stable Pb isotopes in the oceans: a general circulation model study. Geochim. Cosmochim. Acta 66, 257–272 (2002).

    Google Scholar 

  44. Broecker, W. S. & Peng, T. H. Tracers in the Sea. (Lamont-Doherty Geological Observatory, Palisades, New York, 1982).

  45. van de Flierdt, T., Hemming, S. R., Goldstein, S. L. & Abouchami, W. Radiogenic isotope fingerprint of Wilkes Land–Adélie Coast Bottom Water in the circum-Antarctic Ocean. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL026020 (2006).

  46. Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C. & Eisenhauer, A. Efficient extraction of past seawater Pb and Nd isotope signatures from Southern Ocean sediments. Geochem. Geophys. Geosyst. 22, e2020GC009287 (2021).

  47. Basak, C., Martin, E. E. & Kamenov, G. D. Seawater Pb isotopes extracted from Cenozoic marine sediments. Chem. Geol. 286, 94–108 (2011).

    Google Scholar 

  48. Gutjahr, M. et al. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 242, 351–370 (2007).

    Google Scholar 

  49. Von Blanckenburg, F. & Nägler, T. F. Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water. Paleoceanography 16, 424–434 (2001).

    Google Scholar 

  50. Gutjahr, M., Frank, M., Halliday, A. N. & Keigwin, L. D. Retreat of the Laurentide ice sheet tracked by the isotopic composition of Pb in western North Atlantic seawater during termination 1. Earth Planet. Sci. Lett. 286, 546–555 (2009).

    Google Scholar 

  51. Crocket, K. C., Vance, D., Foster, G. L., Richards, D. A. & Tranter, M. Continental weathering fluxes during the last glacial/interglacial cycle: insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW Atlantic. Quat. Sci. Rev. 38, 89–99 (2012).

    Google Scholar 

  52. Locarnini, R. A. et al. World Ocean Atlas 2023, Volume 1: Temperature. (NOAA Atlas NESDIS; 89, 2024).

  53. Bohaty, S. M., Zachos, J. C. & Delaney, M. L. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene–Oligocene transition. Earth Planet. Sci. Lett. 317–318, 251–261 (2012).

    Google Scholar 

  54. Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009).

    Google Scholar 

  55. Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6.20, eaaz1346 (2020).

  56. DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008).

    Google Scholar 

  57. Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl. Acad. Sci. USA 113, 3459–3464 (2016).

    Google Scholar 

  58. Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

  59. Wilson, D. S. et al. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 24–34 (2012).

    Google Scholar 

  60. Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J. & Ferraccioli, F. Long-term increase in Antarctic ice sheet vulnerability driven by bed topography evolution. Geophys. Res. Lett. 47.20, e2020GL090003 (2020).

  61. Wilson, D. S., Pollard, D., Deconto, R. M., Jamieson, S. S. R. & Luyendyk, B. P. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys. Res. Lett. 40, 4305–4309 (2013).

    Google Scholar 

  62. van Peer, T. E. et al. Eccentricity pacing and rapid termination of the early Antarctic ice ages. Nat. Commun. 15, 1–10 (2024).

    Google Scholar 

  63. Boulila, S. et al. Towards a robust and consistent middle Eocene astronomical timescale. Earth Planet. Sci. Lett. 486, 94–107 (2018).

    Google Scholar 

  64. Dunbar, G. B., Naish, T. R., Barrett, P. J., Fielding, C. R. & Powell, R. D. Constraining the amplitude of late Oligocene bathymetric changes in Western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (1) Implications for glacimarine sequence stratigraphic models. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 50–65 (2008).

  65. Barker, P. R. & Kennett, J. P. Shipboard Scientific Party 2 HOLE 689 A HOLE 689 C. Proc. ODP, Init. Repts., 113: College Station, TX (Ocean Drilling Program, 1988).

  66. Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 1–10 (2020).

    Google Scholar 

  67. Scher, H. D. & Martin, E. E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett. 228, 391–405 (2004).

    Google Scholar 

  68. Stichel, T., Frank, M., Rickli, J. & Haley, B. A. The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean. Earth Planet. Sci. Lett. 317–318, 282–294 (2012).

    Google Scholar 

  69. Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34, 441–444 (2006).

    Google Scholar 

  70. Evangelinos, D. et al. Late Oligocene-Miocene proto-Antarctic circumpolar current dynamics off the Wilkes Land margin, East Antarctica. Glob. Planet. Change 191, 103221 (2020).

  71. McCave, I. N., Thornalley, D. J. R. & Hall, I. R. Relation of sortable silt grain-size to deep-sea current speeds: calibration of the ‘Mud Current Meter’. Deep Sea Res. Part I: Oceanogr. Res. Pap. 127, 1–12 (2017).

    Google Scholar 

  72. Wu, S. et al. Orbital- and millennial-scale Antarctic circumpolar current variability in Drake Passage over the past 140,000 years. Nat. Commun. 12, 1–9 (2021).

    Google Scholar 

  73. Süfke, F. et al. Arctic drainage of Laurentide Ice Sheet meltwater throughout the past 14,700 years. Commun. Earth Environ. 3, 1–11 (2022).

    Google Scholar 

  74. Kurzweil, F., Gutjahr, M., Vance, D. & Keigwin, L. Authigenic Pb isotopes from the Laurentian Fan: changes in chemical weathering and patterns of North American freshwater runoff during the last deglaciation. Earth Planet. Sci. Lett. 299, 458–465 (2010).

    Google Scholar 

  75. Roy, M., van de Flierdt, T., Hemming, S. R. & Goldstein, S. L. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean. Chem. Geol. 244, 507–519 (2007).

    Google Scholar 

  76. Robinson, S. et al. Global continental and marine detrital εNd: an updated compilation for use in understanding marine Nd cycling. Chem. Geol. 567, 120119 (2021).

  77. Groenewald, P. B., Moyesb, A. B., Granthamc, G. H. & Krynauw’, J. R. East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land. Precambrian Res. 75, 23–250 (1995).

    Google Scholar 

  78. Foster, G. L. & Vance, D. Negligible glacial-interglacial variation in continental chemical weathering rates. Nature 444, 918–921 (2006).

    Google Scholar 

  79. Parker, R. L. et al. Laurentide ice sheet extent over the last 130 thousand years traced by the Pb isotope signature of weathering inputs to the Labrador Sea. Quat. Sci. Rev. 287, 107564 (2022).

    Google Scholar 

  80. Basak, C. & Martin, E. E. Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition. Nat. Geosci. 6, 121–124 (2013).

    Google Scholar 

  81. Erel, Y., Harlavan, Y. & Blum, J. D. Lead isotope systematics of granitoid weathering. Geochim. Cosmochim. Acta 58, 5299–5306 (1994).

    Google Scholar 

  82. Dausmann, V., Gutjahr, M., Frank, M., Kouzmanov, K. & Schaltegger, U. Experimental evidence for mineral-controlled release of radiogenic Nd, Hf and Pb isotopes from granitic rocks during progressive chemical weathering. Chem. Geol. 507, 64–84 (2019).

    Google Scholar 

  83. Harlavan, Y. & Erel, Y. The release of Pb and REE from granitoids by the dissolution of accessory phases. Geochim. Cosmochim. Acta 66, 837–848 (2002).

    Google Scholar 

  84. Middelburg, J. J., van der Weijden, C. H. & Woittiez, J. R. W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol. 68, 253–273 (1988).

    Google Scholar 

  85. Flowerdew, M. J. et al. Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar. Chem. Geol. 292–293, 88–102 (2012).

    Google Scholar 

  86. McCave, I. N. & Andrews, J. T. Distinguishing current effects in sediments delivered to the ocean by ice. I. Principles, methods and examples. Quat. Sci. Rev. 212, 92–107 (2019).

    Google Scholar 

  87. Wright, N. M., Scher, H. D., Seton, M., Huck, C. E. & Duggan, B. D. No change in Southern Ocean circulation in the Indian Ocean from the Eocene through late Oligocene. Paleoceanogr. Paleoclimatol. 33, 152–167 (2018).

    Google Scholar 

  88. Florindo, F. & Roberts, A. P. Eocene-Oligocene magnetobiochronology of ODP sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Bull. Geol. Soc. Am. 117, 46–66 (2005).

    Google Scholar 

  89. Coxall, H. K. & Wilson, P. A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: insights into global carbon cycling. Paleoceanography 26, https://doi.org/10.1029/2010PA002021 (2011).

  90. Beddow, H. M., Liebrand, D., Sluijs, A., Wade, B. S. & Lourens, L. J. Global change across the Oligocene-Miocene transition: High-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean). Paleoceanography 31, 81–97 (2016).

    Google Scholar 

  91. Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography 30, 1437–1454 (2015).

    Google Scholar 

  92. Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem., Geophys. Geosys. 4, https://doi.org/10.1029/2003GC000559 (2003).

  93. Bian, N. & Martin, P. A. Investigating the fidelity of Mg/Ca and other elemental data from reductively cleaned planktonic foraminifera. Paleoceanography 25, https://doi.org/10.1029/2009PA001796 (2010).

  94. Greaves, M. et al. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochem. Geophys. Geosyst. 9, https://doi.org/10.1029/2008GC001974 (2008).

  95. Healey, S. L., Thunell, R. C. & Corliss, B. H. The Mg/Ca-temperature relationship of benthic foraminiferal calcite: new core-top calibrations in the <4 °C temperature range. Earth Planet. Sci. Lett. 272, 523–530 (2008).

    Google Scholar 

  96. Dickson, J. A. D. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science (1979) 298, 1222–1224 (2002).

    Google Scholar 

  97. Rausch, S., Böhm, F., Bach, W., Klügel, A. & Eisenhauer, A. Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years. Earth Planet. Sci. Lett. 362, 215–224 (2013).

    Google Scholar 

  98. Shackleton, N. J. Attainment of Isotopic Equilibrium Between Ocean Water and the Benthonic Foraminifera Genus Uvigerina: Isotopic Changes in the Ocean During the Last Glacial Cycle. Colloque international du CNRS, 219, 203–210 (1974).

  99. Hut, G. Consultant’s Group Meeting on Stable Isotope Reference Samples for Geochemical and Hydrological Investigations. (International Atomic Energy Agency, Vienna (Austria), 1987).

  100. Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).

    Google Scholar 

  101. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

  102. Struve, T. et al. Neodymium isotopes and concentrations in aragonitic scleractinian cold-water coral skeletons—modern calibration and evaluation of palaeo-applications. Chem. Geol. 453, 146–168 (2017).

    Google Scholar 

  103. Pin, C. & Zalduegui, J. F. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).

    Google Scholar 

  104. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Google Scholar 

  105. Goldstein, S. J. & Jacobsen, S. B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Google Scholar 

  106. Depaolo, D. J. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–196 (1981).

  107. Lugmair, G. W. & Galer, S. J. G. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta 56, 1673–1694 (1992).

    Google Scholar 

  108. Baker, J., Peate, D., Waight, T. & Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 211, 275–303 (2004).

    Google Scholar 

  109. Knust, R. P. Polar Research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facilit. 3, A119 (2017).

    Google Scholar 

  110. Felden, J. et al. PANGAEA—data publisher for Earth & Environmental Science. Sci. Data 10, 347 (2023).

    Google Scholar 

  111. Brzelinski, S., Fischer, A. & Friedrich, O. Late Oligocene (26.2-25.2 Ma) stable oxygen isotopes and Mg/Ca of benthic foraminifera from ODP Site 113-689 [dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.988411 (2026).

    Google Scholar 

  112. Creac’h, L., Brzelinski, S., Gutjahr, M. & Lippold, J. Late Oligocene (26.2-25.2 Ma) radiogenic isotopes (Nd and Pb) from ODP Site 113-689 [dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.988416 (2026).

    Google Scholar 

  113. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Google Scholar 

Download references

Acknowledgements

This research used samples provided by the Ocean Drilling Programme (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under the management of Joint Oceanographic Institutions (JOI), Inc. We acknowledge the AWI sediment core repository for providing the core-top samples. We are grateful to Daniela Müller and André Bahr for the grain-size measurements, and to Lukas Gerber for his support with the Pb concentration measurements. L.C. acknowledges Huang Huang, Moritz Hallmaier and Michael Bollen for helpful discussions. We would like to thank the editor and the two reviewers for their constructive comments, which greatly improved this manuscript. This project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—428548445. We acknowledge financial support by Heidelberg University for the publication fee.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany

    Layla Creac’h, Swaantje Brzelinski, Jörg Lippold, Alexa Fischer & Oliver Friedrich

  2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

    Marcus Gutjahr & Martin Frank

Authors
  1. Layla Creac’h
    View author publications

    Search author on:PubMed Google Scholar

  2. Swaantje Brzelinski
    View author publications

    Search author on:PubMed Google Scholar

  3. Jörg Lippold
    View author publications

    Search author on:PubMed Google Scholar

  4. Marcus Gutjahr
    View author publications

    Search author on:PubMed Google Scholar

  5. Martin Frank
    View author publications

    Search author on:PubMed Google Scholar

  6. Alexa Fischer
    View author publications

    Search author on:PubMed Google Scholar

  7. Oliver Friedrich
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.C. performed the analyses, the visualisation and wrote the original draft. L.C., S.B., M.G. and A.F. generated the data. J.L., M.F. and O.F. conceived the study. All authors participated in the methodology, the investigation, and all reviewed and edited the manuscript and approved the final version.

Corresponding author

Correspondence to Layla Creac’h.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editors: Ning Zhao, Nicola Colombo and Aliénor Lavergne. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary information

Description of Additional Supplementary File

Supplementary Data 1

Supplementary Data 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creac’h, L., Brzelinski, S., Lippold, J. et al. Short-term Antarctic ice-sheet dynamics during the late Oligocene. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03217-4

Download citation

  • Received: 16 March 2025

  • Accepted: 14 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03217-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing