Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Changes in terrestrial weathering following glacial retreat reveal processes altering North Atlantic neodymium isotopes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Changes in terrestrial weathering following glacial retreat reveal processes altering North Atlantic neodymium isotopes

  • J. Tatiana Salinas-Reyes  ORCID: orcid.org/0009-0006-7592-74941,
  • Ellen E. Martin  ORCID: orcid.org/0000-0003-1709-24931,
  • Jonathan B. Martin  ORCID: orcid.org/0000-0001-7047-03211 &
  • …
  • Kelly M. Deuerling2 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 847 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cryospheric science
  • Element cycles
  • Palaeoceanography
  • Palaeoclimate

Abstract

Anomalously unradiogenic neodymium in authigenic phases of the North Atlantic during glacial terminations has been attributed to weathering of glacial sediments derived from shield rocks. However, mechanisms producing unradiogenic neodymium and their link to terrestrial processes remain poorly constrained. Here we analyze neodymium isotopes from co-located stream water and sediment across a deglaciating landscape in southwest Greenland. Dissolved neodymium is ~8 ɛNd units less radiogenic than bedload in recently exposed watersheds. In watersheds with longer exposure time, dissolved neodymium is ~10 ɛNd units and particulate neodymium ~3 ɛNd units higher, decreasing the offset to ~1 unit. This shift results from preferential weathering of minerals with low samarium/neodymium ratios and winnowing of the fine fraction of recently exposed sediments. Variations in the influx and weathering extent of shield-derived sediment alter neodymium isotopic compositions of North Atlantic seafloor sediment and seawater, constraining interpretations of past ice sheet loss and deep ocean circulation.

Similar content being viewed by others

Glacial Southern Ocean deep water Nd isotopic composition dominated by benthic modification

Article Open access 20 January 2025

Modulation of the northward penetration of Antarctica intermediate waters into the eastern equatorial Indian Ocean under glacial and interglacial conditions

Article Open access 20 March 2024

The 79°N Glacier cavity modulates subglacial iron export to the NE Greenland Shelf

Article Open access 24 May 2021

Data availability

Stream water, bedload, and suspended sediment Nd isotope ratios and REE concentration data used in this study are available through the Arctic Data Center at https://doi.org/10.18739/A2GT5FH6P68.

References

  1. Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989).

    Google Scholar 

  2. Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Google Scholar 

  3. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, 2004PA001021 (2005).

    Google Scholar 

  4. Blaser, P. et al. Prevalent North Atlantic deep water during the last glacial maximum and Heinrich Stadial 1. Nat. Geosci. 18, 410–416 (2025).

    Google Scholar 

  5. Roberts, N. L., Piotrowski, A. M., McManus, J. F. & Keigwin, L. D. Synchronous deglacial overturning and water mass source changes. Science 327, 75–78 (2010).

    Google Scholar 

  6. Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Google Scholar 

  7. Lippold, J. et al. Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation. Earth Planet. Sci. Lett. 445, 68–78 (2016).

    Google Scholar 

  8. Howe, J. N. W. et al. North Atlantic deep water production during the last glacial maximum. Nat. Commun. 7, 11765 (2016).

    Google Scholar 

  9. Piepgras, D. J. & Wasserburg, G. J. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochim. Cosmochim. Acta 51, 1257–1271 (1987).

    Google Scholar 

  10. Frank, M. Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev. Geophys. 40, https://doi.org/10.1029/2000RG000094 (2002).

  11. Goldstein, S. L. & Hemming, S. R. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. in Treatise on Geochemistry 453–489 https://doi.org/10.1016/B0-08-043751-6/06179-X (Elsevier, 2003).

  12. van de Flierdt, T., Robinson, L. F., Adkins, J. F., Hemming, S. R. & Goldstein, S. L. Temporal stability of the neodymium isotope signature of the Holocene to glacial North Atlantic. Paleoceanography 21, 2006PA001294 (2006).

    Google Scholar 

  13. Siddall, M. et al. Towards explaining the Nd paradox using reversible scavenging in an ocean general circulation model. Earth Planet. Sci. Lett. 274, 448–461 (2008).

    Google Scholar 

  14. Arsouze, T., Dutay, J.-C., Lacan, F. & Jeandel, C. Reconstructing the Nd oceanic cycle using a coupled dynamical – biogeochemical model. Biogeosciences 6, 2829–2846 (2009).

    Google Scholar 

  15. Lacan, F. & Jeandel, C. Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water. Geochem. Geophys. Geosyst. 6, 2005GC000956 (2005).

    Google Scholar 

  16. Lacan, F. & Jeandel, C. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent–ocean interface. Earth Planet. Sci. Lett. 232, 245–257 (2005).

    Google Scholar 

  17. Lambelet, M. et al. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section. Geochim. Cosmochim. Acta 177, 1–29 (2016).

    Google Scholar 

  18. Wilson, D. J., Piotrowski, A. M., Galy, A. & McCave, I. N. A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean. Earth Planet. Sci. Lett. 341–344, 35–47 (2012).

    Google Scholar 

  19. Abbott, A. N., Haley, B. A. & McManus, J. Bottoms up: sedimentary control of the deep North Pacific Ocean’s εNd signature. Geology 43, 1035–1035 (2015).

    Google Scholar 

  20. Stordal, M. C. & Wasserburg, G. J. Neodymium isotopic study of Baffin Bay water: sources of REE from very old terranes. Earth Planet. Sci. Lett. 77, 259–272 (1986).

    Google Scholar 

  21. Howe, J. N. W., Piotrowski, A. M. & Rennie, V. C. F. Abyssal origin for the early Holocene pulse of unradiogenic neodymium isotopes in Atlantic seawater. Geology 44, 831–834 (2016).

    Google Scholar 

  22. Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).

    Google Scholar 

  23. Pöppelmeier, F. et al. Influence of ocean circulation and benthic exchange on deep northwest Atlantic Nd isotope records during the past 30,000 years. Geochem. Geophys. Geosyst. 20, 4457–4469 (2019).

    Google Scholar 

  24. Jaume-Seguí, M. et al. Distinguishing glacial AMOC and interglacial Non-AMOC Nd isotopic signals in the deep western Atlantic over the last 1 Myr. Paleoceanogr. Paleoclimatol. 36, e2020PA003877 (2021).

    Google Scholar 

  25. von Blanckenburg, F. & Nägler, T. F. Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water. Paleoceanography 16, 424–434 (2001).

    Google Scholar 

  26. Goldstein, S. J. & Jacobsen, S. B. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chem. Geol. Isot. Geosci. Sect. 66, 245–272 (1987).

    Google Scholar 

  27. Levy, L. B., Kelly, M. A., Howley, J. A. & Virginia, R. A. Age of the Ørkendalen moraines, Kangerlussuaq, Greenland: constraints on the extent of the southwestern margin of the Greenland Ice Sheet during the Holocene. Quat. Sci. Rev. 52, 1–5 (2012).

    Google Scholar 

  28. Whitehouse, M. J., Kalsbeek, F. & Nutman, A. P. Crustal growth and crustal recycling in the Nagssugtoqidian orogen of West Greenland. Precambrian Res. 91, 365–381 (1998).

    Google Scholar 

  29. Scribner, C. A. et al. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland. Geochim. Cosmochim. Acta 170, 157–172 (2015).

    Google Scholar 

  30. Deuerling, K. M. et al. Chemical weathering across the western foreland of the Greenland Ice Sheet. Geochim. Cosmochim. Acta 245, 426–440 (2019).

    Google Scholar 

  31. Martin, J. B., Pain, A. J., Martin, E. E., Rahman, S. & Ackerman, P. Comparisons of nutrients exported from greenlandic glacial and deglaciated watersheds. Glob. Biogeochem. Cycles 34, e2020GB006661 (2020).

    Google Scholar 

  32. Pain, A. J., Martin, J. B., Martin, E. E., Rahman, S. & Ackermann, P. Differences in the quantity and quality of organic matter exported from greenlandic glacial and deglaciated watersheds. Glob. Biogeochemical Cycles 34, e2020GB006614 (2020).

    Google Scholar 

  33. Martin, J. B., Pain, A. J. & Martin, E. E. Geochemistry of glacial, proglacial, and deglaciated environments. in Treatise on Geochemistry 251–299 https://doi.org/10.1016/B978-0-323-99762-1.00110-8 (Elsevier, 2025).

  34. Church, M. & Ryder, J. M. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 83, 3059 (1972).

    Google Scholar 

  35. Ballantyne, C. K. A general model of paraglacial landscape response. Holocene 12, 371–376 (2002).

    Google Scholar 

  36. Blum, J. D. & Erel, Y. Rb-Sr isotope systematics of a granitic soil chronosequence: the importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204 (1997).

    Google Scholar 

  37. Pain, A. J., Martin, J. B., Martin, E. E., Salinas-Reyes, J. T. & Bennett, C. Glacial retreat converts exposed landscapes from net carbon sinks to sources. Commun. Earth Environ. 6, 424 (2025).

    Google Scholar 

  38. Blum, J. D., Erel, Y. & Brown, K. 87Sr/86Sr ratios of sierra nevada stream waters: implications for relative mineral weathering rates. Geochim. Cosmochim. Acta 57, 5019–5025 (1993).

    Google Scholar 

  39. Salinas-Reyes, T., Martin, J. & Martin, E. Mineralogical composition, trace element concentration, and radiogenic isotope ratios of mineral separates of bedload from four southwestern Greenland streams (collected 2013 & 2017), NSF Arctic Data Center https://doi.org/10.18739/A24F1MM2R (2025).

  40. Harlavan, Y., Erel, Y. & Blum, J. D. The coupled release of REE and Pb to the soil labile pool with time by weathering of accessory phases, Wind River Mountains, WY. Geochim. Cosmochim. Acta 73, 320–336 (2009).

    Google Scholar 

  41. Foster, G. L. & Vance, D. Negligible glacial–interglacial variation in continental chemical weathering rates. Nature 444, 918–921 (2006).

    Google Scholar 

  42. Gutjahr, M., Frank, M., Halliday, A. N. & Keigwin, L. D. Retreat of the Laurentide ice sheet tracked by the isotopic composition of Pb in western North Atlantic seawater during termination 1. Earth Planet. Sci. Lett. 286, 546–555 (2009).

    Google Scholar 

  43. Crocket, K. C., Vance, D., Foster, G. L., Richards, D. A. & Tranter, M. Continental weathering fluxes during the last glacial/interglacial cycle: insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW Atlantic. Quat. Sci. Rev. 38, 89–99 (2012).

    Google Scholar 

  44. Parker, R. L. et al. Laurentide Ice Sheet extent over the last 130 thousand years traced by the Pb isotope signature of weathering inputs to the Labrador Sea. Quat. Sci. Rev. 287, 107564 (2022).

    Google Scholar 

  45. Blaser, P. et al. The resilience and sensitivity of Northeast Atlantic deep water εNd to overprinting by detrital fluxes over the past 30,000 years. Geochim. Cosmochim. Acta 245, 79–97 (2019).

    Google Scholar 

  46. Du, J., Haley, B. A. & Mix, A. C. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction. Geochim. Cosmochim. Acta 193, 14–35 (2016).

    Google Scholar 

  47. Roberts, N. L., Piotrowski, A. M., Elderfield, H., Eglinton, T. I. & Lomas, M. W. Rare earth element association with foraminifera. Geochim. Cosmochim. Acta 94, 57–71 (2012).

    Google Scholar 

  48. Abbott, A. N., Löhr, S. C., Payne, A., Kumar, H. & Du, J. Widespread lithogenic control of marine authigenic neodymium isotope records? Implications for paleoceanographic reconstructions. Geochim. Cosmochim. Acta 319, 318–336 (2022).

    Google Scholar 

  49. Gutjahr, M. et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 242, 351–370 (2007).

    Google Scholar 

  50. Blaser, P. et al. Extracting foraminiferal seawater Nd isotope signatures from bulk deep sea sediment by chemical leaching. Chem. Geol. 439, 189–204 (2016).

    Google Scholar 

  51. Abbott, A. N., Haley, B. A. & McManus, J. The impact of sedimentary coatings on the diagenetic Nd flux. Earth Planet. Sci. Lett. 449, 217–227 (2016).

    Google Scholar 

  52. Wilson, D. J., Piotrowski, A. M., Galy, A. & Clegg, J. A. Reactivity of neodymium carriers in deep sea sediments: implications for boundary exchange and paleoceanography. Geochim. Cosmochim. Acta 109, 197–221 (2013).

    Google Scholar 

  53. Hillaire-Marcel, C., Vernal, A. D., Bilodeau, G. & Wu, G. Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last ~ 200 ka. Can. J. Earth Sci. 31, 63–89 (1994).

    Google Scholar 

  54. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Google Scholar 

  55. Elmore, A. C., Piotrowski, A. M., Wright, J. D. & Scrivner, A. E. Testing the extraction of past seawater Nd isotopic composition from North Atlantic deep sea sediments and foraminifera. Geochem. Geophys. Geosyst. 12, 2011GC003741 (2011).

    Google Scholar 

  56. Dyke, A. S. An outline of North American deglaciation with emphasis on central and northern Canada. in Developments in Quaternary Sciences Vol. 2 373–424 (Elsevier, 2004).

  57. Colville, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the last interglacial. Science 333, 620–623 (2011).

    Google Scholar 

  58. Reyes, A. V. et al. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510, 525–528 (2014).

    Google Scholar 

  59. Revel, M., Sinko, J. A., Grousset, F. E. & Biscaye, P. E. Sr and Nd isotopes as tracers of North Atlantic lithic particles: paleoclimatic implications. Paleoceanography 11, 95–113 (1996).

    Google Scholar 

  60. Fagel, N. et al. Nd and Pb isotope signatures of the clay-size fraction of Labrador Sea sediments during the Holocene: implications for the inception of the modern deep circulation pattern. Paleoceanography 19, 2003PA000993 (2004).

    Google Scholar 

  61. Harlavan, Y., Erel, Y. & Blum, J. D. Systematic Changes in Lead Isotopic Composition with Soil Age in Glacial Granitic Terrains. Geochim. Cosmochim. Acta 62, 33–46 (1998).

    Google Scholar 

  62. Tachikawa, K., Jeandel, C. & Roy-Barman, M. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth Planet. Sci. Lett. 170, 433–446 (1999).

    Google Scholar 

  63. Toth, D. J. & Lerman, A. Organic matter reactivity and sedimentation rates in the ocean. Am. J. Sci. 277, 465–485 (1977).

    Google Scholar 

  64. Shabani, M. B., Akagi, T. asuku & Masuda, A. kimasa Preconcentration of trace rare-earth elements in seawater by complexation with bis(2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl dihydrogen phosphate adsorbed on a C18 cartridge and determination by inductively coupled plasma mass spectrometry. Anal. Chem. 64, 737–743 (1992).

    Google Scholar 

  65. Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).

    Google Scholar 

  66. Manhes, G., Minster, J. F. & Allègre, C. J. Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Sèverin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39, 14–24 (1978).

    Google Scholar 

  67. Kamenov, G. D., Perfit, M. R., Mueller, P. A. & Jonasson, I. R. Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar–Lihir–Tanga–Feni island chain, Papua New Guinea. Contrib. Miner. Pet. 155, 635–656 (2008).

    Google Scholar 

  68. Salinas-Reyes, T., Martin, J. & Martin, E. Dissolved and sediment neodymium concentrations and isotope ratios and sediment rare earth element concentrations in watersheds of southwestern Greenland (2013–2023), NSF Arctic Data Center https://doi.org/10.18739/A2GT5FH6P (2025).

  69. Filippova, A. et al. Authigenic and detrital carbonate Nd isotope records reflect pulses of detrital material input to the Labrador Sea during the Heinrich stadials. Paleoceanogr. Paleoclimatol. 38, e2022PA004470 (2023).

    Google Scholar 

  70. Blaser, P. et al. Labrador Sea bottom water provenance and REE exchange during the past 35,000 years. Earth Planet. Sci. Lett. 542, 116299 (2020).

    Google Scholar 

  71. Gutjahr, M., Frank, M., Stirling, C. H., Keigwin, L. D. & Halliday, A. N. Tracing the Nd isotope evolution of North Atlantic Deep and Intermediate Waters in the western North Atlantic since the Last Glacial Maximum from Blake Ridge sediments. Earth Planet. Sci. Lett. 266, 61–77 (2008).

    Google Scholar 

  72. Hasholt, B. & Søgaard, H. Et forsøg på en klimatisk-hydrologisk regionsinddeling af Holsteinsborg Kommune (Sisimiut). Geografisk Tidsskr. Dan. J. Geogr. 77, 72–92 (1978).

    Google Scholar 

  73. Bayon, G. et al. The control of weathering processes on riverine and seawater hafnium isotope ratios. Geology 34, 433 (2006).

    Google Scholar 

Download references

Acknowledgements

The authors disclose support for the research of this work from the US National Science Foundation [Grant number 2000649]. Sampling was conducted under the Bureau of Minerals and Petroleum Export licenses 027/2014 and 016/2017, and the Scientific Survey Licenses VU-00113 and SP-34. J.T.S.R. thanks George Kamenov for technical assistance and Christina Bennett for field work and lab assistance. We thank the reviewers for their time and effort in providing feedback that improved this study.

Author information

Authors and Affiliations

  1. Department of Geological Sciences, University of Florida, Gainesville, FL, USA

    J. Tatiana Salinas-Reyes, Ellen E. Martin & Jonathan B. Martin

  2. Department of Geography/Geology, University of Nebraska at Omaha, Omaha, NE, USA

    Kelly M. Deuerling

Authors
  1. J. Tatiana Salinas-Reyes
    View author publications

    Search author on:PubMed Google Scholar

  2. Ellen E. Martin
    View author publications

    Search author on:PubMed Google Scholar

  3. Jonathan B. Martin
    View author publications

    Search author on:PubMed Google Scholar

  4. Kelly M. Deuerling
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.T. Salinas-Reyes conducted field work, trace element and Nd isotope analyses, and data analysis, and drafted the original manuscript. E.E. Martin and J.B. Martin led the research project, conducted field work and data analysis, and contributed to reviewing and editing the manuscript. K.M. Deuerling conducted field work and trace element and Nd isotope analyses, and contributed to reviewing and editing the manuscript.

Corresponding author

Correspondence to J. Tatiana Salinas-Reyes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Patrick Blaser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Kai Deng and Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas-Reyes, J.T., Martin, E.E., Martin, J.B. et al. Changes in terrestrial weathering following glacial retreat reveal processes altering North Atlantic neodymium isotopes. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03220-9

Download citation

  • Received: 30 May 2025

  • Accepted: 14 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03220-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing