Abstract
The last deglaciation provides an opportunity to assess the response of El Niño–Southern Oscillation to rapid warming and disruptions of the Atlantic Meridional Overturning Circulation, both projected in the near future. We present a reconstruction of deglacial El Niño–Southern Oscillation activity using finely laminated sediments from the El Niño–Southern Oscillation-sensitive Peruvian margin. An interannual record of titanium fluxes, a proxy for riverine discharge, shows that the frequency of extreme Eastern Pacific El Niño events and the amplitude of El Niño–Southern Oscillation variability were higher during the deglaciation and peaked during episodes of massive iceberg discharge into the North Atlantic. Maximum El Niño–Southern Oscillation variability occurred in the early phase of Heinrich event 1, at ~17.3–16.7 kyr BP, associated with at least five extreme floods per century in southern Peru. This proxy evidence linking El Niño–Southern Oscillation and the North Atlantic suggests a possible increase in El Niño-related extreme climatic events under future Atlantic Meridional Overturning Circulation weakening.
Data availability
The Tinorm time series and ENSO metrics of sediment cores G14 and M77/2-005-3 are available for reviewers at https://figshare.com/s/e4da7a2aed5d676d6100. The dataset will be made publicly available if and after the article is accepted for publication, with doi:10.6084/m9.figshare.29583158. The PISCOp rainfall dataset is available at https://doi.org/10.6084/m9.figshare.21127423.v2.
References
Garreaud, R. D. The Andes climate and weather. Adv. Geosci. 22, 3–11 (2009).
Grimm, A. M. & Tedeschi, R. G. ENSO and extreme rainfall events in South America. J. Clim. 22, 1589–1609 (2009).
Sulca, J., Takahashi, K., Espinoza, J.-C., Vuille, M. & Lavado-Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 38, 420–435 (2018).
Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment (2021) https://doi.org/10.1038/s43017-021-00199-z.
Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).
Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).
Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional overturning circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).
Masson-Delmotte, V. et al. Climate change 2021: the physical science basis. Contribution Working Group I Sixth Assess. Rep. Intergovern. Panel Clim. Change 2, 2391 (2021).
Orihuela-Pinto, B., Santoso, A., England, M. H. & Taschetto, A. S. Reduced ENSO variability due to a collapsed atlantic meridional overturning circulation. J. Clim. 35, 5307–5320 (2022).
Liu, W., Duarte Cavalcante Pinto, D., Fedorov, A. & Zhu, J. The impacts of a weakened atlantic meridional overturning circulation on ENSO in a warmer climate. Geophys. Res. Lett. 50, e2023GL103025 (2023).
Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).
Bond, G. et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249 (1992).
Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).
Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological Impact of Heinrich events in the Subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).
Bard, E. et al. Deglacial sa-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).
Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).
McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).
Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).
Cruz, F. W. et al. Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci. 2, 210–214 (2009).
Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the afro-asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).
Timmermann, A. et al. The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Clim. 20, 4899–4919 (2007).
Williamson, M. S. et al. Effect of AMOC collapse on ENSO in a high resolution general circulation model. Clim. Dyn. 50, 2537–2552 (2018).
Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Nino-Southern Oscillation and tropical Pacific mean state. Nat. Commun. 4, 255–258 (2013).
Koutavas, A. & Joanides, S. El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, 2378 (2012).
Thirumalai, K., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: a sensitivity analysis. Paleoceanography 28, 401–412 (2013).
Glaubke, R. H. et al. An inconsistent ENSO response to Northern Hemisphere stadials over the last deglaciation. Geophys. Res. Lett. 51, e2023GL107634 (2024).
Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).
Carré, M. et al. High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quat. Sci. Rev. 268, 107125 (2021).
Rein, B. et al. El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, https://doi.org/10.1029/2004PA001099 (2005).
Briceño-Zuluaga, F. J. et al. Terrigenous material supply to the Peruvian central\hack\newline continental shelf (Pisco, 14\degree\,S) during the last 1000 years:\hack\newline paleoclimatic implications. Climate 12, 787–798 (2016).
Yseki, M. et al. Millennial variability of terrigenous transport to the central–southern Peruvian margin during the last deglaciation. Climate 18, 2255–2269 (2022).
Sifeddine, A. et al. Laminated sediments from the central Peruvian continental slope: a 500 year record of upwelling system productivity, terrestrial runoff and redox conditions. Prog. Oceanogr. 79, 190–197 (2008).
Stiles, C. A., Mora, C. I. & Driese, S. G. Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma 116, 279–299 (2003).
Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).
Stuut, J.-B. W. & Lamy, F. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quat. Res. 62, 301–309 (2004).
Stuut, J.-B. W., Temmesfeld, F. & De Deckker, P. A 550ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 83, 83–94 (2014).
Mollier-Vogel, E., Leduc, G., Böschen, T., Martinez, P. & Schneider, R. R. Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka. Quat. Sci. Rev. 76, 29–38 (2013).
Gutiérrez, D. et al. Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age. Biogeosciences 6, 835–848 (2009).
Martin, L. C. P. et al. Lake Tauca highstand (Heinrich Stadial 1a) driven by a southward shift of the Bolivian High. Sci. Adv. 4, eaar2514 (2018).
Fornace, K. L. et al. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth Planet. Sci. Lett. 408, 263–271 (2014).
McGee, D., Donohoe, A., Marshall, J. & Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 390, 69–79 (2014).
Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, 7364 (2011).
Carré, M., Sachs, J. P., Schauer, A. J., Rodríguez, W. E. & Ramos, F. C. Reconstructing El Niño-Southern Oscillation activity and ocean temperature seasonality from short-lived marine mollusk shells from Peru. Palaeogeogr. Palaeoclimatol. 371, 45–53 (2013).
Lagos, P., Silva, Y., Nickl, E. & Mosquera, K. El Niño-related precipitation variability in Peru. Adv. Geosci. 14, 231–237 (2008).
Morera, S. B., Condom, T., Crave, A., Steer, P. & Guyot, J. L. The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968–2012). Sci. Rep. 7, 11947 (2017).
Wells, L. E. Holocene history of the El Nino phenomenon as recorded in flood sediments of northern coastal Peru. Geology 18, 1134–1137 (1990).
Keefer, D. K., Moseley, M. E. & deFrance, S. D. A 38,000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeogr. Palaeoclimatol. 194, 41–77 (2003).
Rein, B. How do the 1982/83 and 1997/98 El Niños rank in a geological record from Peru? Quat. Int. 161, 56–66 (2007).
Carré, M. et al. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345, 1045–1048 (2014).
Garreaud, R., Vuille, M. & Clement, A. C. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. 194, 5–22 (2003).
Vuille, M., Bradley, R. S. & Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res. 105, 12447–12460 (2000).
Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).
Espinoza-Morriberón, D. et al. Dynamics of surface chlorophyll and the asymmetric response of the high productive zone in the peruvian sea: effects of El Niño and La Niña. Int. J. Climatol. 45, e8764 (2025).
Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millenial timescales during the Holocene epoch. Nature 420, 162–165 (2002).
Zhang, Z., Leduc, G. & Sachs, J. P. El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands. Earth Planet. Sci. Lett. 404, 420–434 (2014).
Cobb, K. M. et al. Highly Variable El Niño-Southern Oscillation Throughout the Holocene. Science 339, 67–70 (2013).
Rodgers, K. B. et al. Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophys. Res. Lett. 31, L14314 (2004).
Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002).
Brendryen, J., Haflidason, H., Yokoyama, Y., Haaga, K. A. & Hannisdal, B. Eurasian Ice Sheet collapse was a major source of Meltwater Pulse 1A 14,600 years ago. Nat. Geosci. 13, 363–368 (2020).
Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast atlantic ocean during the Past 130,000 years. Quat. Res. 29, 142–152 (1988).
Wu, L., Li, C., Yang, C. & Xie, S.-P. Global teleconnections in response to a shutdown of the Atlantic Meridional overturning circulation. J. Clim. 21, 3002–3019 (2008).
Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).
Merkel, U., Prange, M. & Schulz, M. ENSO variability and teleconnections during glacial climates. Quat. Sci. Rev. 29, 86–100 (2010).
Dong, B. & Sutton, R. T. Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Clim. 20, 4920–4939 (2007).
Dokken, T. M. & Jansen, E. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401, 458–461 (1999).
Liu, Z. et al. Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature 515, 550–553 (2014).
Kienast, S. S. et al. Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1. Paleoceanography 28, 663–674 (2013).
Emile-Geay, J. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 9, 168–173 (2016).
Luan, Y., Braconnot, P., Yu, Y. & Zheng, W. Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5Â ka BP. Climate Dynamics 1–18 https://doi.org/10.1007/s00382-015-2467-7 (2015).
Kageyama, M. et al. Climatic impacts of fresh water hosing under last glacial maximum conditions: a multi-model study. Climate 9, 935–953 (2013).
DiNezio, P. N. et al. Tropical response to ocean circulation slowdown raises future drought risk. Nature 644, 676–683 (2025).
Zahn, R. et al. Thermohaline instability in the North Atlantic during meltwater events: stable isotope and ice-rafted detritus records from Core SO75-26KL, Portuguese Margin. Paleoceanography 12, 696–710 (1997).
Clement, A. C., Seager, R. & Cane, M. A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography 14, 441–456 (1999).
Brown, J. R. et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate 16, 1777–1805 (2020).
Braconnot, P., Luan, Y., Brewer, S. & Zheng, W. Impact of Earth’s orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Clim. Dyn. 38, 1081–1092 (2012).
Cai, W. et al. Increasing frequency of extreme El Nino events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).
Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).
Callahan, C. W. et al. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 11, 752–757 (2021).
McPhaden, M. J., Santoso, A. & Cai, W. El Niño Southern Oscillation in a Changing Climate. vol. 253 (Wiley, 2020).
Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
Yang, Q. et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 7, 10525 (2016).
Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl. Acad. Sci. USA 116, 1934–1939 (2019).
Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the atlantic meridional overturning circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).
Hassan, T., Allen, R. J., Liu, W. & Randles, C. A. Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys. 21, 5821–5846 (2021).
Ma, Q. et al. Revisiting climate impacts of an AMOC slowdown: dependence on freshwater locations in the North Atlantic. Sci. Adv. 10, eadr3243 (2024).
Salvatteci, R. et al. Centennial to millennial-scale changes in oxygenation and productivity in the Eastern Tropical South Pacific during the last 25,000 years. Quat. Sci. Rev. 131, 102–117 (2016).
Salvatteci, R., Schneider, R. R., Blanz, T. & Mollier-Vogel, E. Deglacial to Holocene ocean temperatures in the Humboldt current system as indicated by Alkenone Paleothermometry. Geophys. Res. Lett. 46, 281–292 (2019).
Brodie, I. & Kemp, A. E. S. Variation in biogenic and detrital fluxes and formation of laminae in late Quaternary sediments from the Peruvian coastal upwelling zone. Mar. Geol. 116, 385–398 (1994).
Heaton, T. J. et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
Ortlieb, L., Vargas, G. & Saliège, J.-F. Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14-24°S) throughout the Holocene. Quat. Res. 75, 91–103 (2011).
Carré, M., Jackson, D., Maldonado, A., Chase, B. M. & Sachs, J. P. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years. Quat. Res. 85, 87–93 (2016).
Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
Reinhardt, L. et al. High-resolution sediment echosounding off Peru: Late Quaternary depositional sequences and sedimentary structures of a current-dominated shelf. Mar. Geophys. Res. 23, 335–351 (2002).
Salvatteci, R. et al. Cross-stratigraphies from a seismically active mud lens off Peru indicate horizontal extensions of laminae, missing sequences, and a need for multiple cores for high resolution records. Mar. Geol. 357, 72–89 (2014).
Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).
Bertrand, S. et al. Inorganic geochemistry of lake sediments: a review of analytical techniques and guidelines for data interpretation. Earth-Sci. Rev. 249, 104639 (2024).
Saukel, C., Lamy, F., Stuut, J.-B. W., Tiedemann, R. & Vogt, C. Distribution and provenance of wind-blown SE Pacific surface sediments. Mar. Geol. 280, 130–142 (2011).
Hill, I. G., Worden, R. H. & Meighan, I. G. Yttrium: the immobility-mobility transition during basaltic weathering. Geology 28, 923–926 (2000).
Bern, C. R., Thompson, A. & Chadwick, O. A. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model. Geochimica et. Cosmochimica Acta 151, 1–18 (2015).
Labille, J., Harns, C., Bottero, J.-Y. & Brant, J. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ. Sci. Technol. 49, 6608–6616 (2015).
Velazco, F. et al. Flujos de material particulado y formación de una lámina de sedimentos en la plataforma continental interna frente al Callao durante El Niño Costero 2017. Boletin Inst. del. Mar. del. Perú 36, 428–451 (2022).
Du, X. et al. High-resolution interannual precipitation reconstruction of Southern California: implications for Holocene ENSO evolution. Earth Planet. Sci. Lett. 554, 116670 (2021).
Capotondi, A. et al. Understanding ENSO Diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).
Sanabria, J. et al. Rainfall along the coast of Peru during strong El Niño events. Int. J. Climatol. 38, 1737–1747 (2018).
Aceituno, P. On the functioning of the southern oscillation in the South American sector. Part I: surface climate. Monthly Weather Rev. 116, 505–524 (1988).
Aybar, C. et al. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J. 65, 770–785 (2020).
Garreaud, R. & Aceituno, P. Interannual rainfall variability over the South American Altiplano. J. Clim. 14, 2779–2789 (2012).
Huerta, A. & Lavado-Casimiro, W. Trends and variability of precipitation extremes in the Peruvian Altiplano (1971–2013). Int. J. Climatol. 41, 513–528 (2021).
Takahashi, K. & Martínez, A. G. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim. Dyn. 52, 7389–7415 (2019).
Echevin, V. et al. Forcings and Evolution of the 2017 Coastal El Niño Off Northern Peru and Ecuador. Front. Mar. Sci. 5, 367 (2018).
Peng, Q., Xie, S.-P., Passalacqua, G. A., Miyamoto, A. & Deser, C. The 2023 extreme coastal El Niño: atmospheric and air-sea coupling mechanisms. Sci. Adv. 10, eadk8646 (2024).
Hu, Z.-Z., Huang, B., Zhu, J., Kumar, A. & McPhaden, M. J. On the variety of coastal El Niño events. Clim. Dyn. 52, 7537–7552 (2019).
Quispe-Ccalluari, C. et al. An index of coastal thermal effects of El Niño Southern Oscillation on the Peruvian upwelling ecosystem. Int. J. Climatol. 38, 3191–3201 (2018).
Huyer, A., Smith, R. L. & Paluszkiewicz, T. Coastal upwelling off Peru during normal and El Niño times, 1981-1984. J. Geophys. Res. 92, 14,297–14,307 (1987).
Chamorro, A. et al. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997–1998 in the Peruvian upwelling system. Clim. Dyn. 51, 3717–3733 (2018).
Fontugne, M., Carré, M., Bentaleb, I., Julien, M. & Lavallée, D. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46, 531–537 (2004).
Barber, R. T. & Chavez, F. P. Biological consequences of El Niño. Science 222, 1203–1210 (1983).
Espinoza-Morriberón, D. et al. Impacts of El Niño events on the Peruvian upwelling system productivity. J. Geophys. Res. Oceans 122, 012429 (2007).
Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Berger, A. Long-term variations of caloric insolation resulting from the earth’s orbital elements. Quat. Res. 9, 139–167 (1978).
Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).
Acknowledgements
This publication was supported by the IRD-DPF and ANR-15-JCLI-0003-03 BELMONT FORUM PACMEDY. Part of XRF data were obtained on the ALYSES facility (IRD-UPMC) that was supported by grants from Région Ile-de-France. This work is a contribution of the Collaborative Research Project 754 “Climate-Biogeochemistry interactions in the Tropical Ocean” (www.sfb754.de), which is supported by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank the crew and scientists aboard R/V Meteor cruises M77/2 in 2008 and thank Bo Thamdrup, chief scientist of the Galathea-3 expedition (Leg 14), and Bente Lomstein, who conducted the core sampling onboard the RV Vaedderen. We thank SENAMHI and NOAA for sharing climate datasets.
Author information
Authors and Affiliations
Contributions
M.Y. and M.C. contributed equally to this work. M.Y., B.T., D.G., and M.C. designed the study. M.Y. and M.C. wrote the manuscript. R.S., P.M., and H.B. measured XRF data. M.Y. and D.E.M. analyzed data. M.Y., M.C., B.T., D.G., R.S., P.M., H.B., and D.E.M. contributed to the interpretation of the data and the preparation of the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Kyung-Sook Yun, Alireza Bahadori and Aliénor Lavergne. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yseki, M., Turcq, B., Gutiérrez, D. et al. El Niño–Southern Oscillation strengthened by North Atlantic Iceberg discharge during Heinrich stadial 1. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03247-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03247-y