Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
El Niño–Southern Oscillation strengthened by North Atlantic Iceberg discharge during Heinrich stadial 1
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

El Niño–Southern Oscillation strengthened by North Atlantic Iceberg discharge during Heinrich stadial 1

  • Marco Yseki  ORCID: orcid.org/0000-0002-8024-06151 na1,
  • Bruno Turcq  ORCID: orcid.org/0000-0002-7782-52681,
  • Dimitri Gutiérrez2,3,
  • Renato Salvatteci4,
  • Dante Espinoza-Morriberón2,5,
  • Hugues Boucher1,
  • Philippe Martinez  ORCID: orcid.org/0000-0002-9825-20326 &
  • …
  • Matthieu Carré  ORCID: orcid.org/0000-0001-8178-73161,7 na1 

Communications Earth & Environment , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Palaeoceanography
  • Palaeoclimate

Abstract

The last deglaciation provides an opportunity to assess the response of El Niño–Southern Oscillation to rapid warming and disruptions of the Atlantic Meridional Overturning Circulation, both projected in the near future. We present a reconstruction of deglacial El Niño–Southern Oscillation activity using finely laminated sediments from the El Niño–Southern Oscillation-sensitive Peruvian margin. An interannual record of titanium fluxes, a proxy for riverine discharge, shows that the frequency of extreme Eastern Pacific El Niño events and the amplitude of El Niño–Southern Oscillation variability were higher during the deglaciation and peaked during episodes of massive iceberg discharge into the North Atlantic. Maximum El Niño–Southern Oscillation variability occurred in the early phase of Heinrich event 1, at ~17.3–16.7 kyr BP, associated with at least five extreme floods per century in southern Peru. This proxy evidence linking El Niño–Southern Oscillation and the North Atlantic suggests a possible increase in El Niño-related extreme climatic events under future Atlantic Meridional Overturning Circulation weakening.

Data availability

The Tinorm time series and ENSO metrics of sediment cores G14 and M77/2-005-3 are available for reviewers at https://figshare.com/s/e4da7a2aed5d676d6100. The dataset will be made publicly available if and after the article is accepted for publication, with doi:10.6084/m9.figshare.29583158. The PISCOp rainfall dataset is available at https://doi.org/10.6084/m9.figshare.21127423.v2.

References

  1. Garreaud, R. D. The Andes climate and weather. Adv. Geosci. 22, 3–11 (2009).

    Google Scholar 

  2. Grimm, A. M. & Tedeschi, R. G. ENSO and extreme rainfall events in South America. J. Clim. 22, 1589–1609 (2009).

    Google Scholar 

  3. Sulca, J., Takahashi, K., Espinoza, J.-C., Vuille, M. & Lavado-Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 38, 420–435 (2018).

    Google Scholar 

  4. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment (2021) https://doi.org/10.1038/s43017-021-00199-z.

  5. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Google Scholar 

  6. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Google Scholar 

  7. Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional overturning circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    Google Scholar 

  8. Masson-Delmotte, V. et al. Climate change 2021: the physical science basis. Contribution Working Group I Sixth Assess. Rep. Intergovern. Panel Clim. Change 2, 2391 (2021).

    Google Scholar 

  9. Orihuela-Pinto, B., Santoso, A., England, M. H. & Taschetto, A. S. Reduced ENSO variability due to a collapsed atlantic meridional overturning circulation. J. Clim. 35, 5307–5320 (2022).

    Google Scholar 

  10. Liu, W., Duarte Cavalcante Pinto, D., Fedorov, A. & Zhu, J. The impacts of a weakened atlantic meridional overturning circulation on ENSO in a warmer climate. Geophys. Res. Lett. 50, e2023GL103025 (2023).

    Google Scholar 

  11. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Google Scholar 

  12. Bond, G. et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249 (1992).

    Google Scholar 

  13. Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).

    Google Scholar 

  14. Bard, E., Rostek, F., Turon, J.-L. & Gendreau, S. Hydrological Impact of Heinrich events in the Subtropical Northeast Atlantic. Science 289, 1321–1324 (2000).

    Google Scholar 

  15. Bard, E. et al. Deglacial sa-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382, 241–244 (1996).

    Google Scholar 

  16. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).

    Google Scholar 

  17. McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Google Scholar 

  18. Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).

    Google Scholar 

  19. Cruz, F. W. et al. Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci. 2, 210–214 (2009).

    Google Scholar 

  20. Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought in the afro-asian monsoon region during Heinrich event 1. Science 331, 1299–1302 (2011).

    Google Scholar 

  21. Timmermann, A. et al. The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Clim. 20, 4899–4919 (2007).

    Google Scholar 

  22. Williamson, M. S. et al. Effect of AMOC collapse on ENSO in a high resolution general circulation model. Clim. Dyn. 50, 2537–2552 (2018).

    Google Scholar 

  23. Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Nino-Southern Oscillation and tropical Pacific mean state. Nat. Commun. 4, 255–258 (2013).

    Google Scholar 

  24. Koutavas, A. & Joanides, S. El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, 2378 (2012).

  25. Thirumalai, K., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: a sensitivity analysis. Paleoceanography 28, 401–412 (2013).

    Google Scholar 

  26. Glaubke, R. H. et al. An inconsistent ENSO response to Northern Hemisphere stadials over the last deglaciation. Geophys. Res. Lett. 51, e2023GL107634 (2024).

    Google Scholar 

  27. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Google Scholar 

  28. Carré, M. et al. High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quat. Sci. Rev. 268, 107125 (2021).

    Google Scholar 

  29. Rein, B. et al. El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, https://doi.org/10.1029/2004PA001099 (2005).

  30. Briceño-Zuluaga, F. J. et al. Terrigenous material supply to the Peruvian central\hack\newline continental shelf (Pisco, 14\degree\,S) during the last 1000 years:\hack\newline paleoclimatic implications. Climate 12, 787–798 (2016).

    Google Scholar 

  31. Yseki, M. et al. Millennial variability of terrigenous transport to the central–southern Peruvian margin during the last deglaciation. Climate 18, 2255–2269 (2022).

    Google Scholar 

  32. Sifeddine, A. et al. Laminated sediments from the central Peruvian continental slope: a 500 year record of upwelling system productivity, terrestrial runoff and redox conditions. Prog. Oceanogr. 79, 190–197 (2008).

    Google Scholar 

  33. Stiles, C. A., Mora, C. I. & Driese, S. G. Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma 116, 279–299 (2003).

    Google Scholar 

  34. Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).

    Google Scholar 

  35. Stuut, J.-B. W. & Lamy, F. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quat. Res. 62, 301–309 (2004).

    Google Scholar 

  36. Stuut, J.-B. W., Temmesfeld, F. & De Deckker, P. A 550ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 83, 83–94 (2014).

    Google Scholar 

  37. Mollier-Vogel, E., Leduc, G., Böschen, T., Martinez, P. & Schneider, R. R. Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka. Quat. Sci. Rev. 76, 29–38 (2013).

    Google Scholar 

  38. Gutiérrez, D. et al. Rapid reorganization in ocean biogeochemistry off Peru towards the end of the Little Ice Age. Biogeosciences 6, 835–848 (2009).

    Google Scholar 

  39. Martin, L. C. P. et al. Lake Tauca highstand (Heinrich Stadial 1a) driven by a southward shift of the Bolivian High. Sci. Adv. 4, eaar2514 (2018).

    Google Scholar 

  40. Fornace, K. L. et al. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth Planet. Sci. Lett. 408, 263–271 (2014).

    Google Scholar 

  41. McGee, D., Donohoe, A., Marshall, J. & Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 390, 69–79 (2014).

    Google Scholar 

  42. Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, 7364 (2011).

  43. Carré, M., Sachs, J. P., Schauer, A. J., Rodríguez, W. E. & Ramos, F. C. Reconstructing El Niño-Southern Oscillation activity and ocean temperature seasonality from short-lived marine mollusk shells from Peru. Palaeogeogr. Palaeoclimatol. 371, 45–53 (2013).

    Google Scholar 

  44. Lagos, P., Silva, Y., Nickl, E. & Mosquera, K. El Niño-related precipitation variability in Peru. Adv. Geosci. 14, 231–237 (2008).

    Google Scholar 

  45. Morera, S. B., Condom, T., Crave, A., Steer, P. & Guyot, J. L. The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968–2012). Sci. Rep. 7, 11947 (2017).

    Google Scholar 

  46. Wells, L. E. Holocene history of the El Nino phenomenon as recorded in flood sediments of northern coastal Peru. Geology 18, 1134–1137 (1990).

    Google Scholar 

  47. Keefer, D. K., Moseley, M. E. & deFrance, S. D. A 38,000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeogr. Palaeoclimatol. 194, 41–77 (2003).

    Google Scholar 

  48. Rein, B. How do the 1982/83 and 1997/98 El Niños rank in a geological record from Peru? Quat. Int. 161, 56–66 (2007).

    Google Scholar 

  49. Carré, M. et al. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345, 1045–1048 (2014).

    Google Scholar 

  50. Garreaud, R., Vuille, M. & Clement, A. C. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. 194, 5–22 (2003).

    Google Scholar 

  51. Vuille, M., Bradley, R. S. & Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res. 105, 12447–12460 (2000).

    Google Scholar 

  52. Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Google Scholar 

  53. Espinoza-Morriberón, D. et al. Dynamics of surface chlorophyll and the asymmetric response of the high productive zone in the peruvian sea: effects of El Niño and La Niña. Int. J. Climatol. 45, e8764 (2025).

    Google Scholar 

  54. Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millenial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Google Scholar 

  55. Zhang, Z., Leduc, G. & Sachs, J. P. El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands. Earth Planet. Sci. Lett. 404, 420–434 (2014).

    Google Scholar 

  56. Cobb, K. M. et al. Highly Variable El Niño-Southern Oscillation Throughout the Holocene. Science 339, 67–70 (2013).

    Google Scholar 

  57. Rodgers, K. B. et al. Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophys. Res. Lett. 31, L14314 (2004).

    Google Scholar 

  58. Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002).

    Google Scholar 

  59. Brendryen, J., Haflidason, H., Yokoyama, Y., Haaga, K. A. & Hannisdal, B. Eurasian Ice Sheet collapse was a major source of Meltwater Pulse 1A 14,600 years ago. Nat. Geosci. 13, 363–368 (2020).

    Google Scholar 

  60. Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast atlantic ocean during the Past 130,000 years. Quat. Res. 29, 142–152 (1988).

    Google Scholar 

  61. Wu, L., Li, C., Yang, C. & Xie, S.-P. Global teleconnections in response to a shutdown of the Atlantic Meridional overturning circulation. J. Clim. 21, 3002–3019 (2008).

    Google Scholar 

  62. Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).

    Google Scholar 

  63. Merkel, U., Prange, M. & Schulz, M. ENSO variability and teleconnections during glacial climates. Quat. Sci. Rev. 29, 86–100 (2010).

    Google Scholar 

  64. Dong, B. & Sutton, R. T. Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Clim. 20, 4920–4939 (2007).

    Google Scholar 

  65. Dokken, T. M. & Jansen, E. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401, 458–461 (1999).

    Google Scholar 

  66. Liu, Z. et al. Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature 515, 550–553 (2014).

    Google Scholar 

  67. Kienast, S. S. et al. Near collapse of the meridional SST gradient in the eastern equatorial Pacific during Heinrich Stadial 1. Paleoceanography 28, 663–674 (2013).

    Google Scholar 

  68. Emile-Geay, J. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 9, 168–173 (2016).

    Google Scholar 

  69. Luan, Y., Braconnot, P., Yu, Y. & Zheng, W. Tropical Pacific mean state and ENSO changes: sensitivity to freshwater flux and remnant ice sheets at 9.5Â ka BP. Climate Dynamics 1–18 https://doi.org/10.1007/s00382-015-2467-7 (2015).

  70. Kageyama, M. et al. Climatic impacts of fresh water hosing under last glacial maximum conditions: a multi-model study. Climate 9, 935–953 (2013).

    Google Scholar 

  71. DiNezio, P. N. et al. Tropical response to ocean circulation slowdown raises future drought risk. Nature 644, 676–683 (2025).

    Google Scholar 

  72. Zahn, R. et al. Thermohaline instability in the North Atlantic during meltwater events: stable isotope and ice-rafted detritus records from Core SO75-26KL, Portuguese Margin. Paleoceanography 12, 696–710 (1997).

    Google Scholar 

  73. Clement, A. C., Seager, R. & Cane, M. A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography 14, 441–456 (1999).

    Google Scholar 

  74. Brown, J. R. et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate 16, 1777–1805 (2020).

    Google Scholar 

  75. Braconnot, P., Luan, Y., Brewer, S. & Zheng, W. Impact of Earth’s orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Clim. Dyn. 38, 1081–1092 (2012).

    Google Scholar 

  76. Cai, W. et al. Increasing frequency of extreme El Nino events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Google Scholar 

  77. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Google Scholar 

  78. Callahan, C. W. et al. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 11, 752–757 (2021).

    Google Scholar 

  79. McPhaden, M. J., Santoso, A. & Cai, W. El Niño Southern Oscillation in a Changing Climate. vol. 253 (Wiley, 2020).

  80. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Google Scholar 

  81. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Google Scholar 

  82. Yang, Q. et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 7, 10525 (2016).

    Google Scholar 

  83. Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl. Acad. Sci. USA 116, 1934–1939 (2019).

    Google Scholar 

  84. Weijer, W., Cheng, W., Garuba, O. A., Hu, A. & Nadiga, B. T. CMIP6 models predict significant 21st century decline of the atlantic meridional overturning circulation. Geophys. Res. Lett. 47, e2019GL086075 (2020).

    Google Scholar 

  85. Hassan, T., Allen, R. J., Liu, W. & Randles, C. A. Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys. 21, 5821–5846 (2021).

    Google Scholar 

  86. Ma, Q. et al. Revisiting climate impacts of an AMOC slowdown: dependence on freshwater locations in the North Atlantic. Sci. Adv. 10, eadr3243 (2024).

    Google Scholar 

  87. Salvatteci, R. et al. Centennial to millennial-scale changes in oxygenation and productivity in the Eastern Tropical South Pacific during the last 25,000 years. Quat. Sci. Rev. 131, 102–117 (2016).

    Google Scholar 

  88. Salvatteci, R., Schneider, R. R., Blanz, T. & Mollier-Vogel, E. Deglacial to Holocene ocean temperatures in the Humboldt current system as indicated by Alkenone Paleothermometry. Geophys. Res. Lett. 46, 281–292 (2019).

    Google Scholar 

  89. Brodie, I. & Kemp, A. E. S. Variation in biogenic and detrital fluxes and formation of laminae in late Quaternary sediments from the Peruvian coastal upwelling zone. Mar. Geol. 116, 385–398 (1994).

    Google Scholar 

  90. Heaton, T. J. et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Google Scholar 

  91. Ortlieb, L., Vargas, G. & Saliège, J.-F. Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14-24°S) throughout the Holocene. Quat. Res. 75, 91–103 (2011).

    Google Scholar 

  92. Carré, M., Jackson, D., Maldonado, A., Chase, B. M. & Sachs, J. P. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years. Quat. Res. 85, 87–93 (2016).

    Google Scholar 

  93. Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  94. Reinhardt, L. et al. High-resolution sediment echosounding off Peru: Late Quaternary depositional sequences and sedimentary structures of a current-dominated shelf. Mar. Geophys. Res. 23, 335–351 (2002).

    Google Scholar 

  95. Salvatteci, R. et al. Cross-stratigraphies from a seismically active mud lens off Peru indicate horizontal extensions of laminae, missing sequences, and a need for multiple cores for high resolution records. Mar. Geol. 357, 72–89 (2014).

    Google Scholar 

  96. Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).

    Google Scholar 

  97. Bertrand, S. et al. Inorganic geochemistry of lake sediments: a review of analytical techniques and guidelines for data interpretation. Earth-Sci. Rev. 249, 104639 (2024).

    Google Scholar 

  98. Saukel, C., Lamy, F., Stuut, J.-B. W., Tiedemann, R. & Vogt, C. Distribution and provenance of wind-blown SE Pacific surface sediments. Mar. Geol. 280, 130–142 (2011).

    Google Scholar 

  99. Hill, I. G., Worden, R. H. & Meighan, I. G. Yttrium: the immobility-mobility transition during basaltic weathering. Geology 28, 923–926 (2000).

    Google Scholar 

  100. Bern, C. R., Thompson, A. & Chadwick, O. A. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model. Geochimica et. Cosmochimica Acta 151, 1–18 (2015).

    Google Scholar 

  101. Labille, J., Harns, C., Bottero, J.-Y. & Brant, J. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ. Sci. Technol. 49, 6608–6616 (2015).

    Google Scholar 

  102. Velazco, F. et al. Flujos de material particulado y formación de una lámina de sedimentos en la plataforma continental interna frente al Callao durante El Niño Costero 2017. Boletin Inst. del. Mar. del. Perú 36, 428–451 (2022).

    Google Scholar 

  103. Du, X. et al. High-resolution interannual precipitation reconstruction of Southern California: implications for Holocene ENSO evolution. Earth Planet. Sci. Lett. 554, 116670 (2021).

    Google Scholar 

  104. Capotondi, A. et al. Understanding ENSO Diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Google Scholar 

  105. Sanabria, J. et al. Rainfall along the coast of Peru during strong El Niño events. Int. J. Climatol. 38, 1737–1747 (2018).

    Google Scholar 

  106. Aceituno, P. On the functioning of the southern oscillation in the South American sector. Part I: surface climate. Monthly Weather Rev. 116, 505–524 (1988).

    Google Scholar 

  107. Aybar, C. et al. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J. 65, 770–785 (2020).

    Google Scholar 

  108. Garreaud, R. & Aceituno, P. Interannual rainfall variability over the South American Altiplano. J. Clim. 14, 2779–2789 (2012).

    Google Scholar 

  109. Huerta, A. & Lavado-Casimiro, W. Trends and variability of precipitation extremes in the Peruvian Altiplano (1971–2013). Int. J. Climatol. 41, 513–528 (2021).

    Google Scholar 

  110. Takahashi, K. & Martínez, A. G. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim. Dyn. 52, 7389–7415 (2019).

    Google Scholar 

  111. Echevin, V. et al. Forcings and Evolution of the 2017 Coastal El Niño Off Northern Peru and Ecuador. Front. Mar. Sci. 5, 367 (2018).

    Google Scholar 

  112. Peng, Q., Xie, S.-P., Passalacqua, G. A., Miyamoto, A. & Deser, C. The 2023 extreme coastal El Niño: atmospheric and air-sea coupling mechanisms. Sci. Adv. 10, eadk8646 (2024).

    Google Scholar 

  113. Hu, Z.-Z., Huang, B., Zhu, J., Kumar, A. & McPhaden, M. J. On the variety of coastal El Niño events. Clim. Dyn. 52, 7537–7552 (2019).

    Google Scholar 

  114. Quispe-Ccalluari, C. et al. An index of coastal thermal effects of El Niño Southern Oscillation on the Peruvian upwelling ecosystem. Int. J. Climatol. 38, 3191–3201 (2018).

    Google Scholar 

  115. Huyer, A., Smith, R. L. & Paluszkiewicz, T. Coastal upwelling off Peru during normal and El Niño times, 1981-1984. J. Geophys. Res. 92, 14,297–14,307 (1987).

    Google Scholar 

  116. Chamorro, A. et al. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997–1998 in the Peruvian upwelling system. Clim. Dyn. 51, 3717–3733 (2018).

    Google Scholar 

  117. Fontugne, M., Carré, M., Bentaleb, I., Julien, M. & Lavallée, D. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46, 531–537 (2004).

    Google Scholar 

  118. Barber, R. T. & Chavez, F. P. Biological consequences of El Niño. Science 222, 1203–1210 (1983).

    Google Scholar 

  119. Espinoza-Morriberón, D. et al. Impacts of El Niño events on the Peruvian upwelling system productivity. J. Geophys. Res. Oceans 122, 012429 (2007).

  120. Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Google Scholar 

  121. Berger, A. Long-term variations of caloric insolation resulting from the earth’s orbital elements. Quat. Res. 9, 139–167 (1978).

    Google Scholar 

  122. Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).

    Google Scholar 

Download references

Acknowledgements

This publication was supported by the IRD-DPF and ANR-15-JCLI-0003-03 BELMONT FORUM PACMEDY. Part of XRF data were obtained on the ALYSES facility (IRD-UPMC) that was supported by grants from Région Ile-de-France. This work is a contribution of the Collaborative Research Project 754 “Climate-Biogeochemistry interactions in the Tropical Ocean” (www.sfb754.de), which is supported by the Deutsche Forschungsgemeinschaft (DFG). We would like to thank the crew and scientists aboard R/V Meteor cruises M77/2 in 2008 and thank Bo Thamdrup, chief scientist of the Galathea-3 expedition (Leg 14), and Bente Lomstein, who conducted the core sampling onboard the RV Vaedderen. We thank SENAMHI and NOAA for sharing climate datasets.

Author information

Author notes
  1. These authors contributed equally: Marco Yseki, Matthieu Carré.

Authors and Affiliations

  1. LOCEAN-IPSL, Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, IRD/Sorbonne Université/CNRS/MNHN, Paris, France

    Marco Yseki, Bruno Turcq, Hugues Boucher & Matthieu Carré

  2. Instituto del Mar del Peru (IMARPE), Esquina General Gamarra y Valle, Callao, Peru

    Dimitri Gutiérrez & Dante Espinoza-Morriberón

  3. Laboratorio de Ciencias del Mar, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru

    Dimitri Gutiérrez

  4. Center for Ocean and Society, Kiel University, Kiel, Germany

    Renato Salvatteci

  5. Facultad de Ingeniería, Universidad Tecnológica del Perú, Jirón Hernán Velarde 260, Cercado de Lima, Lima, Perú

    Dante Espinoza-Morriberón

  6. UMR 5805 EPOC, Université de Bordeaux-CNRS-EPHE, Pessac, Cedex, France

    Philippe Martinez

  7. Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Centro de Investigación para el Desarrollo Integral y Sostenible, Laboratorios de Investigación y Desarrollo, Lima, Peru

    Matthieu Carré

Authors
  1. Marco Yseki
    View author publications

    Search author on:PubMed Google Scholar

  2. Bruno Turcq
    View author publications

    Search author on:PubMed Google Scholar

  3. Dimitri Gutiérrez
    View author publications

    Search author on:PubMed Google Scholar

  4. Renato Salvatteci
    View author publications

    Search author on:PubMed Google Scholar

  5. Dante Espinoza-Morriberón
    View author publications

    Search author on:PubMed Google Scholar

  6. Hugues Boucher
    View author publications

    Search author on:PubMed Google Scholar

  7. Philippe Martinez
    View author publications

    Search author on:PubMed Google Scholar

  8. Matthieu Carré
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.Y. and M.C. contributed equally to this work. M.Y., B.T., D.G., and M.C. designed the study. M.Y. and M.C. wrote the manuscript. R.S., P.M., and H.B. measured XRF data. M.Y. and D.E.M. analyzed data. M.Y., M.C., B.T., D.G., R.S., P.M., H.B., and D.E.M. contributed to the interpretation of the data and the preparation of the final manuscript.

Corresponding author

Correspondence to Marco Yseki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Kyung-Sook Yun, Alireza Bahadori and Aliénor Lavergne. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Peer Review file

Supplemental Material

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yseki, M., Turcq, B., Gutiérrez, D. et al. El Niño–Southern Oscillation strengthened by North Atlantic Iceberg discharge during Heinrich stadial 1. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03247-y

Download citation

  • Received: 11 April 2025

  • Accepted: 21 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03247-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing