Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Physicochemical controls on ancient carbon assimilation into ecosystem biomass in shallow-water hydrothermal systems
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Physicochemical controls on ancient carbon assimilation into ecosystem biomass in shallow-water hydrothermal systems

  • Joely Marie Maak  ORCID: orcid.org/0009-0000-6111-582X1,
  • Marcus Elvert  ORCID: orcid.org/0000-0003-3863-09751,2,
  • Hendrik Grotheer  ORCID: orcid.org/0000-0003-0207-37671,3,
  • Yu-Shih Lin  ORCID: orcid.org/0000-0001-6498-03414,
  • Gesine Mollenhauer  ORCID: orcid.org/0000-0001-5138-564X1,2,3,
  • In-Tian Lin  ORCID: orcid.org/0000-0002-5734-43285,
  • Solveig I. Bühring  ORCID: orcid.org/0000-0003-4378-53141 &
  • …
  • Enno Schefuß  ORCID: orcid.org/0000-0002-5960-930X1 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon cycle
  • Marine chemistry

Abstract

Hydrothermal vents release substantial amounts of ancient carbon into the ocean, primarily as carbon dioxide, yet the extent to which this carbon is integrated into marine food webs remains poorly constrained. Here, we present a combination of bulk radiocarbon and stable carbon isotope measurements of particulate organic carbon from water column filters with compound-specific hydrogen and radiocarbon isotope analyses of fatty acids from surface sediments to trace carbon assimilation across benthic and pelagic realms in a low pH, shallow-water hydrothermal system off Taiwan. Isotope correlations indicate that vent-derived carbon dioxide constitutes a substantial fraction of the local microbial and faunal biomass through chemoautotrophic pathways (up to ~30%). Farther from the vents, hydrothermal carbon remains detectable and is incorporated into photoautotrophic biomass in the overlying water column. Notably, ancient carbon content in the standing stock of particulate organic carbon was higher at the lower temperature (“White”) vent, even though fluid and sulfide emissions – and thus potential energy availability – were substantially greater at the higher temperature (“Yellow”) vent. These findings show that physicochemical conditions, including pH and temperature, rather than fluid chemistry alone, control carbon assimilation patterns and ultimately limit the retention of vent-derived carbon in this shallow-water system.

Similar content being viewed by others

Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum

Article Open access 03 August 2023

Radiocarbon evidence for the stability of polar ocean overturning during the Holocene

Article Open access 26 June 2023

Diverse geochemical conditions for prebiotic chemistry in shallow-sea alkaline hydrothermal vents

Article 21 November 2022

Data availability

Compound-specific δ2H and Δ14C data, as well as bulk δ2Hwater and Δ14CPOC data, are reported within the supplementary material and are available at https://doi.org/10.5281/zenodo.18310623. Compound-specific δ13C data can be found in Ref. 28 and within the PANGAEA database (Maak et al.73).

Code availability

All Code necessary to understand the manuscript can be accessed in Code Ocean.

References

  1. Pohlman, J. W., Bauer, J. E., Waite, W. F., Osburn, C. L. & Chapman, N. R. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nat. Geosci. 4, 37–41 (2011).

    Google Scholar 

  2. Wang, X.-C., Chen, R. F., Whelan, J. & Eglinton, L. Contribution of “old” carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico. Geophys. Res. Lett. 28, 3313–3316 (2001).

    Google Scholar 

  3. McCarthy, M. D. et al. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011).

    Google Scholar 

  4. Gomez-Saez, G. V. et al. Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems. Geochim. Cosmochim. Acta 190, 35–52 (2016).

    Google Scholar 

  5. Estes, E. R. et al. Abiotic synthesis of graphite in hydrothermal vents. Nat. Commun. 10, 5179 (2019).

    Google Scholar 

  6. Wang, S.-L., Lin, Y.-S., Burr, G. S., Wang, P.-L. & Lin, L.-H. Radiocarbon and stable carbon isotope constraints on the propagation of vent CO2 to fluid in the acidic Kueishantao shallow water hydrothermal system. Geochem. Geophys. 23, e2022GC010508 (2022).

    Google Scholar 

  7. Druffel, E. R. M. & Griffin, S. Radiocarbon in dissolved organic carbon of the South Pacific Ocean. Geophys. Res. Lett. 42, 4096–4101 (2015).

    Google Scholar 

  8. McNichol, J. et al. Genus-specific carbon fixation activity measurements reveal distinct responses to oxygen among hydrothermal vent Campylobacteria. Appl. Environ. Microbiol. 88, e02083–21 (2022).

    Google Scholar 

  9. Sievert, S. et al. Fluid flow stimulates chemoautotrophy in hydrothermally influenced coastal sediments. Commun. Earth Environ. 3, 96 (2022).

    Google Scholar 

  10. Deng, W. et al. Strategies of chemolithoautotrophs adapting to high temperature and extremely acidic conditions in a shallow hydrothermal ecosystem. Microbiome 11, 270 (2023).

    Google Scholar 

  11. Achberger, A. M. et al. Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nat. Microbiol. 9, 657–668 (2024).

    Google Scholar 

  12. Wegener, G. et al. Hydrothermal vents supporting persistent plumes and microbial chemoautotrophy at Gakkel Ridge (Arctic Ocean). Front. Microbiol. 15, 1473822 (2024).

    Google Scholar 

  13. Chen, C.-T. A. et al. Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Acta Oceanol. Sin. 24, 125–133 (2005).

    Google Scholar 

  14. Chen, C.-T. A. et al. Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chem. Geol. 224, 69–81 (2005).

    Google Scholar 

  15. Lin, Y.-S. et al. Biogeochemistry and dynamics of particulate organic matter in a shallow-water hydrothermal field (Kueishantao Islet, NE Taiwan). Mar. Geol. 422, 106121 (2020).

    Google Scholar 

  16. Lin, Y.-S. et al. Fates of vent CO2 and its impact on carbonate chemistry in the shallow-water hydrothermal field offshore Kueishantao Islet, NE Taiwan. Mar. Chem. 210, 1–12 (2019).

    Google Scholar 

  17. Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8, 682 (2017).

    Google Scholar 

  18. Zhang, Y. et al. Sulfur-metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems. PLOS ONE 7, e44593 (2012).

    Google Scholar 

  19. Wang, L., Cheung, M. K., Kwan, H. S., Hwang, J.-S. & Wong, C. K. Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. J. Basic Microbiol. 55, 1308–1318 (2015).

    Google Scholar 

  20. Tang, K., Liu, K., Jiao, N., Zhang, Y. & Chen, C.-T. A. Functional metagenomic investigations of microbial communities in a shallow-sea hydrothermal system. PLOS ONE 8, e72958 (2013).

    Google Scholar 

  21. Tang, K. et al. Cultivation-independent and cultivation-dependent analysis of microbes in the shallow-sea hydrothermal system off Kueishantao Island, Taiwan: Unmasking heterotrophic bacterial diversity and functional capacity. Front. Microbiol. 9, 279 (2018).

    Google Scholar 

  22. Lin, Y.-S. et al. Intense but variable autotrophic activity in a rapidly flushed shallow-water hydrothermal plume (Kueishantao Islet, Taiwan). Geobiology 19, 87–101 (2020).

    Google Scholar 

  23. Valentine, D. L. Isotopic remembrance of metabolism past. Proc. Natl. Acad. Sci. USA 106, 12565–12566 (2009).

    Google Scholar 

  24. Zhang, X., Gillespie, A. L. & Sessions, A. L. Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc. Natl. Acad. Sci. USA 106, 12580–12586 (2009).

    Google Scholar 

  25. Osburn, M. R., Dawson, K. S., Fogel, M. L. & Sessions, A. L. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria. Front. Microbiol. 7, 627 (2016).

    Google Scholar 

  26. Hayes, J. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev. Mineral. Geochem. 43, 225–277 (2001).

    Google Scholar 

  27. House, C. H., Schopf, J. W. & Stetter, K. O. Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org. Geochem. 34, 345–356 (2003).

    Google Scholar 

  28. Maak, J. M. et al. The energy-efficient reductive tricarboxylic acid cycle drives carbon uptake and transfer to higher trophic levels within the Kueishantao shallow-water hydrothermal system. Biogeosciences 22, 1853–1863 (2025).

    Google Scholar 

  29. Ruben, M. et al. Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms. Nat. Geosci. 16, 625–630 (2023).

    Google Scholar 

  30. Campbell, B. J. & Cary, S. C. Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl. Environ. Microbiol. 70, 6282–6289 (2004).

    Google Scholar 

  31. Jónasdóttir, S. H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 17, 151 (2019).

    Google Scholar 

  32. Ng, N., Huang, J. F. & Ho, P. H. Description of a new species of hydrothermal crab, Xenograpsus testudinatus (Crustacea: Decapoda: Brachyura: Grapsidae) from Taiwan. National Taiwan Museum Special Publication Series 10, 191–199 (2000).

    Google Scholar 

  33. Shanks, W. C. III & Seyfried, W. E. Jr Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: Sodium metasomatism and seawater sulfate reduction. J. Geophys. Res. Solid Earth 92, 11387–11399 (1987).

    Google Scholar 

  34. Chen, M., et al. Highly diverse diazotrophs drive high N2 fixation rates in a shallow submarine hydrothermal system. Fundam. Res. https://doi.org/10.1016/j.fmre.2023.07.009 (2023).

  35. Chen, X.-G. et al. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan. J. Mar. Syst. 180, 211–219 (2018).

    Google Scholar 

  36. Pichler, T., Veizer, J. & Hall, G. E. M. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar. Chem. 64, 229–252 (1999).

    Google Scholar 

  37. Kao, S. J. et al. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surf. Dynam. 2, 127–139 (2014).

    Google Scholar 

  38. Bao, R. et al. Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology 44, 791–794 (2016).

    Google Scholar 

  39. Liang, W. D., Tang, T. Y., Yang, Y. J., Ko, M. T. & Chuang, W. S. Upper-ocean currents around Taiwan. Deep-Sea Res. II: Top. Stud. Oceanogr. 50, 1085–1105 (2003).

    Google Scholar 

  40. Hung, J. J., Yeh, H. Y., Peng, S. H. & Chen, C. T. A. Influence of submarine hydrothermalism on sulfur and metal accumulation in surface sediments in the Kueishantao venting field off northeastern Taiwan. Mar. Chem. 198, 88–96 (2018).

    Google Scholar 

  41. Wang, L. et al. Metagenomic insights into the functions of microbial communities in sulfur-rich sediment of a shallow-water hydrothermal vent off Kueishan Island. Front. Microbiol. 13, 992034 (2022).

    Google Scholar 

  42. Wu, J. Y. et al. Differential feeding habits of the shallow-water hydrothermal vent crab Xenograpsus testudinatus correlate with their resident vent types at a scale of meters. Biogeosciences 20, 2693–2706 (2023).

    Google Scholar 

  43. Mei, K. et al. Transformation, fluxes and impacts of dissolved metals from shallow water hydrothermal vents on nearby ecosystem offshore of Kueishantao (NE Taiwan). Sustainability 14, 1754 (2022).

    Google Scholar 

  44. Alberty, R. A. Calculating apparent equilibrium constants of enzyme-catalyzed reactions at pH 7. Biochem. Educ. 28, 12–17 (2000).

    Google Scholar 

  45. Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).

    Google Scholar 

  46. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801–1805 (2003).

    Google Scholar 

  47. Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int. J. Syst. Evol. Microbiol. 54, 1477–1482 (2004).

    Google Scholar 

  48. Woulds, C., Bell, J. B., Glover, A. G., Bouillon, S. & Brown, L. S. Benthic carbon fixation and cycling in diffuse hydrothermal and background sediments in the Bransfield Strait, Antarctica. Biogeosciences 17, 1–12 (2020).

    Google Scholar 

  49. Reysenbach, A.-L. & Shock, E. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296, 1077–1082 (2002).

    Google Scholar 

  50. Wang, L. et al. Diversity of total bacterial communities and chemoautotrophic populations in sulfur-rich sediments of shallow-water hydrothermal vents off Kueishan Island, Taiwan. Microb. Ecol. 73, 571–582 (2017).

    Google Scholar 

  51. Li, Y. et al. Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem. Front. Microbiol. 9, 2718 (2018).

    Google Scholar 

  52. Elling, F. J. et al. Marine and terrestrial nitrifying bacteria are sources of diverse bacteriohopanepolyols. Geobiology 20, 399–420 (2022).

    Google Scholar 

  53. Aepfler, R. F., Bühring, S. I. & Elvert, M. Substrate characteristic bacterial fatty acid production based on amino acid assimilation and transformation in marine sediments. FEMS Microbiol. Ecol. 95, fiz142 (2019).

    Google Scholar 

  54. Zhu, Q.-Z., Wegener, G., Hinrichs, K.-U. & Elvert, M. Activity of ancillary heterotrophic community members in anaerobic methane-oxidizing cultures. Front. Microbiol. 13, 892654 (2022).

    Google Scholar 

  55. Luther III, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL094869 (2021).

    Google Scholar 

  56. Valentine, D. L., Sessions, A. L., Tyler, S. C. & Chidthaisong, A. Hydrogen isotope fractionation during H2/CO2 acetogenesis: hydrogen utilization efficiency and the origin of lipid-bound hydrogen. Geobiology 2, 179–188 (2004).

    Google Scholar 

  57. Campbell, B. J., Li, C., Sessions, A. L. & Valentine, D. L. Hydrogen isotopic fractionation in lipid biosynthesis by H2-consuming Desulfobacterium autotrophicum. Geochim. Cosmochim. Acta 73, 2744–2757 (2009).

    Google Scholar 

  58. Heinzelmann, S. M. et al. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids. Front. Microbiol. 6, 408 (2015).

    Google Scholar 

  59. Sessions, A. L., Caltech Fractome Database, California Institute of Technology (2015).

  60. Zhang, Z., Sachs, J. P. & Marchetti, A. Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen-limited growth rate effects. Org. Geochem. 40, 428–439 (2009).

    Google Scholar 

  61. Chen, X. et al. Impact of metabolism and temperature on 2H ∕ 1H fractionation in lipids of the marine bacterium Shewanella piezotolerans WP3. Biogeosciences 20, 1491–1504 (2023).

    Google Scholar 

  62. Onyenwoke, R. U. & Wiegel, J., Thermoanaerobacter, in Bergey’s Manual of Systematics of Archaea and Bacteria. p. 1–29. (2015).

  63. Gomez-Saez, G. V. et al. Relative importance of chemoautotrophy for primary production in a light exposed marine shallow hydrothermal system. Front. Microbiol. 8, 35–52 (2017).

    Google Scholar 

  64. Chen, X.-G. et al. The chemical and isotopic compositions of gas discharge from shallow-water hydrothermal vents at Kueishantao, offshore northeast Taiwan. Geochem. J. 50, 341–355 (2016).

    Google Scholar 

  65. Takai, K. et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 56, 1725–1733 (2006).

    Google Scholar 

  66. Sturt, H. F., Summons, R. E., Smith, K., Elvert, M. & Hinrichs, K.-U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass Spectrom. 18, 617–628 (2004).

    Google Scholar 

  67. Eglinton, T. I., Aluwihare, L. I., Bauer, J. E., Druffel, E. R. M. & McNichol, A. P. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68, 904–912 (1996).

    Google Scholar 

  68. Mollenhauer, G., Grotheer, H., Gentz, T., Bonk, E. & Hefter, J. Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI), Germany. Nucl. Instrum. Methods Phys. Res. B 496, 45–51 (2021).

    Google Scholar 

  69. Sun, S. et al. 14C blank assessment in small-scale compound-specific radiocarbon analysis of lipid biomarkers and lignin phenols. Radiocarbon 62, 207–218 (2020).

    Google Scholar 

  70. Winterfeld, M. et al. Deglacial mobilization of pre-aged terrestrial carbon from degrading permafrost. Nat. Commun. 9, 3666 (2018).

    Google Scholar 

  71. Druffel, E. R. M. et al. Marine organic carbon and radiocarbon- present and future challenges. Radiocarbon 64, 705–721 (2022).

    Google Scholar 

  72. D’Errico, J. inpaint_nans. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans (2024).

  73. Maak, J. M., et al., Fatty acid concentrations and compound-specific carbon stable isotopes of sediments, filtered particulate organic carbon, and crab tissue from the hydrothermal vent system off Kueishantao, Taiwan, https://doi.org/10.1594/PANGAEA.967575, PANGAEA (2025).

Download references

Acknowledgements

We express our gratitude to the Taiwan Ministry of Environment for granting permission to access the samples. Additionally, we extend our thanks to the scientists, crew members, and scientific divers who participated in the OR2−2024 and OR2−2095 cruises aboard the RV Ocean Researcher II, as well as those involved in the sampling conducted during a fishing boat expedition from May 25–28, 2015. We further thank Rebecca Aepfler (AWI, Bremerhaven) and Prof. Li-Lian Liu (National Sun Yat-sen University) for their help during sampling. This study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC − 2077—390741603), a DFG Emmy Noether Grant awarded to S.I.B. (BU 2606/1−1), and the DAAD (Projektbezogener Personenaustausch − 57138084, awarded to S.I.B. and Y.-S.L.). We are grateful to the several anonymous reviewers for their time, careful reading, and constructive comments that helped improve the manuscript. We also acknowledge financial support for open-access publishing from the University of Bremen’s Open Access Publication Fund.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. MARUM- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

    Joely Marie Maak, Marcus Elvert, Hendrik Grotheer, Gesine Mollenhauer, Solveig I. Bühring & Enno Schefuß

  2. Faculty of Geosciences, University of Bremen, Bremen, Germany

    Marcus Elvert & Gesine Mollenhauer

  3. Alfred Wegener Institute for Polar and Marine Research (AWI), Bremerhaven, Germany

    Hendrik Grotheer & Gesine Mollenhauer

  4. Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan

    Yu-Shih Lin

  5. Exploration and Development Research Institute, CPC Corporation, Miaoli, Taiwan

    In-Tian Lin

Authors
  1. Joely Marie Maak
    View author publications

    Search author on:PubMed Google Scholar

  2. Marcus Elvert
    View author publications

    Search author on:PubMed Google Scholar

  3. Hendrik Grotheer
    View author publications

    Search author on:PubMed Google Scholar

  4. Yu-Shih Lin
    View author publications

    Search author on:PubMed Google Scholar

  5. Gesine Mollenhauer
    View author publications

    Search author on:PubMed Google Scholar

  6. In-Tian Lin
    View author publications

    Search author on:PubMed Google Scholar

  7. Solveig I. Bühring
    View author publications

    Search author on:PubMed Google Scholar

  8. Enno Schefuß
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Joely Marie Maak: Conceptualization, data analysis, visualization, interpretation, writing—original draft, editing. Marcus Elvert: Conceptualization, supervision, review, editing. Hendrik Grotheer: Conceptualization, data analysis, interpretation, review, editing. Yu-Shih Lin: Sample collection, review, editing. Gesine Mollenhauer: Conceptualization, data analysis, review, editing. In-Tian Lin: Sample collection, interpretation, review, editing. Solveig I. Bühring: Conceptualization, supervision, review, editing. Enno Schefuß: Conceptualization, supervision, review, editing.

Corresponding authors

Correspondence to Joely Marie Maak or Enno Schefuß.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Huei-Ting Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alice Drinkwater. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maak, J.M., Elvert, M., Grotheer, H. et al. Physicochemical controls on ancient carbon assimilation into ecosystem biomass in shallow-water hydrothermal systems. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03254-z

Download citation

  • Received: 15 September 2025

  • Accepted: 22 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03254-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing