Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Higher, but more variable, annual CO2 emissions from lakes in drier Arctic landscapes
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 February 2026

Higher, but more variable, annual CO2 emissions from lakes in drier Arctic landscapes

  • Václava Hazuková  ORCID: orcid.org/0000-0003-2073-221X1,2,3,
  • Fredrik Alriksson3,
  • Cristian Gudasz  ORCID: orcid.org/0000-0002-4949-97923,
  • Jan Karlsson  ORCID: orcid.org/0000-0001-5730-06943,
  • Chunlin Song  ORCID: orcid.org/0000-0003-3627-23504,
  • Matthew J. Bogard  ORCID: orcid.org/0000-0001-9491-03285,
  • David E. Butman  ORCID: orcid.org/0000-0003-3520-74266,
  • Joshua F. Dean  ORCID: orcid.org/0000-0001-9058-70767,
  • Anders Jonsson3,
  • Erik Lundin8,
  • Suzanne E. Tank  ORCID: orcid.org/0000-0002-5371-65779 &
  • …
  • Jasmine E. Saros1,2 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 390 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon cycle
  • Limnology

Abstract

Land-to-water hydrological connections represent a key regulatory mechanism of carbon transport, controlling carbon dioxide (CO2) emissions from lakes; however, as of yet, there is no assessment of its role at a pan-Arctic scale across large climatic and topographical gradients. We hypothesized that hydrologically well-connected lakes in wetter regions are CO2 sources fueled by stronger lateral fluxes of external carbon relative to drier regions. However, based on data from >200 Arctic lakes, we found that lakes in drier regions have higher and more variable annual CO2 emissions (\({37.0}_{6.2}^{146.0}\) gC m-2 yr-1, \({{median}}_{Q1}^{Q3}\)) compared to lakes in wetter regions (\({8.0}_{1.7}^{17.3}\) gC m-2 yr-1), with both the lowest and the highest fluxes recorded among dryland lakes. We hypothesize that with increasing wetness, the relative proportion of fluvial emissions increases, whereas in drier landscapes where lakes often have limited stream export, carbon inputs can be retained and more efficiently emitted from lakes.

Similar content being viewed by others

Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling

Article Open access 02 December 2021

Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

Article Open access 31 August 2023

Permafrost thaw drives surface water decline across lake-rich regions of the Arctic

Article 29 August 2022

Data availability

The dataset analyzed in this study is available on Figshare (10.6084/m9.figshare.31136239)93.

References

  1. Rawlins, M. A. & Karmalkar, A. V. Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming. Cryosphere 18, 1033–1052 (2024).

    Google Scholar 

  2. Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Google Scholar 

  3. Hao, M. et al. Contribution of atmospheric moisture transport to winter Arctic warming. Int. J. Climatol. 39, 2697–2710 (2019).

  4. Beel, C. R. et al. Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. Nat. Commun. 12, 1448 (2021).

    Google Scholar 

  5. Bracken, L. J. et al. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth Sci. Rev. 119, 17–34 (2013).

    Google Scholar 

  6. Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358–370 (2020).

    Google Scholar 

  7. Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, eaaz5236 (2021).

    Google Scholar 

  8. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Google Scholar 

  9. Wang, J. et al. The surface water and ocean topography mission (SWOT) prior lake database (PLD): lake mask and operational auxiliaries. Water Resour. Res. 61, e2023WR036896 (2025).

    Google Scholar 

  10. Song, C. et al. Inland water greenhouse gas emissions offset the terrestrial carbon sink in the Northern cryosphere. Sci. Adv. 10, eadp0024 (2024).

    Google Scholar 

  11. Vonk, J. E. et al. The land–ocean Arctic carbon cycle. Nat. Rev. Earth Environ. 6, 86–105 (2025).

    Google Scholar 

  12. Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).

    Google Scholar 

  13. Bogard, M. J. et al. Negligible cycling of terrestrial carbon in many lakes of the arid circumpolar landscape. Nat. Geosci. 12, 180–185 (2019).

    Google Scholar 

  14. Osburn, C. L., Anderson, N. J., Leng, M. J., Barry, C. D. & Whiteford, E. J. Stable isotopes reveal independent carbon pools across an Arctic hydro-climatic gradient: implications for the fate of carbon in warmer and drier conditions. Limnol. Oceanogr. Lett. 4, 205–213 (2019).

    Google Scholar 

  15. Ayala-Borda, P. et al. Dominance of net autotrophy in arid landscape low relief polar lakes, Nunavut, Canada. Glob. Change Biol. 30, e17193 (2024).

    Google Scholar 

  16. Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in Northern Temperate Lakes. Ecology 80, 1422–1431 (1999).

    Google Scholar 

  17. Tetzlaff, D. et al. Connectivity between landscapes and riverscapes—a unifying theme in integrating hydrology and ecology in catchment science? Hydrol. Process. 21, 1385–1389 (2007).

    Google Scholar 

  18. McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Screen, J. A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 12, 6765 (2021).

    Google Scholar 

  19. Swain, D. L. et al. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 6, 35–50 (2025).

    Google Scholar 

  20. Webster, K. E. et al. An empirical evaluation of the nutrient-color paradigm for lakes. Limnol. Oceanogr. 53, 1137–1148 (2008).

    Google Scholar 

  21. Golub, M. et al. Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs. Environ. Res. Lett. 18, 034046 (2023).

    Google Scholar 

  22. de Wit, H. A. et al. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation matters most. Limnol. Oceanogr. Lett. 3, 275–284 (2018).

    Google Scholar 

  23. Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97, 5–16 (2016).

    Google Scholar 

  24. Stets, E. G., Winter, T. C., Rosenberry, D. O. & Striegl, R. G. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resour. Res. 46, 1–16 (2010).

  25. Basist, A., Bell, G. D. & Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Clim. 7, 1305–1315 (1994).

    Google Scholar 

  26. Gnann, S. et al. The influence of topography on the global terrestrial water cycle. Rev. Geophys. 63, e2023RG000810 (2025).

    Google Scholar 

  27. Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S. & Karlsson, J. Integrating carbon emissions from lakes and streams in a subarctic catchment. J. Geophys. Res. Biogeosci. 118, 1200–1207 (2013).

    Google Scholar 

  28. Balathandayuthabani, S., Wallin, M. B., Klemedtsson, L., Crill, P. & Bastviken, D. Aquatic carbon fluxes in a hemiboreal catchment are predictable from landscape morphology, temperature, and runoff. Limnol. Oceanogr. Lett. 8, 313–322 (2023).

    Google Scholar 

  29. Woo, M. Permafrost Hydrology. (Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-23462-0 2012).

  30. Seekell, D., Cael, B., Lindmark, E. & Byström, P. The fractal scaling relationship for river inlets to lakes. Geophys. Res. Lett. 48, e2021GL093366 (2021).

    Google Scholar 

  31. Vachon, D., Sponseller, R. A. & Karlsson, J. Integrating carbon emission, accumulation and transport in inland waters to understand their role in the global carbon cycle. Glob. Change Biol. 27, 719–727 (2021).

    Google Scholar 

  32. Casas-Ruiz, J. P. et al. A tale of pipes and reactors: controls on the in-stream dynamics of dissolved organic matter in rivers. Limnol. Oceanogr. 62, S85–S94 (2017).

    Google Scholar 

  33. Tank, S. E., Lesack, L. F. W. & Hesslein, R. H. Northern delta lakes as summertime CO2 absorbers within the Arctic landscape. Ecosystems 12, 144–157 (2009).

    Google Scholar 

  34. Scholes, R. J. Taking the mumbo out of the jumbo: progress towards a robust basis for ecological scaling. Ecosystems 20, 4–13 (2017).

    Google Scholar 

  35. Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proc. Natl. Acad. Sci. 113, 1978–1986 (2016).

    Google Scholar 

  36. Koch, J. C. et al. Heterogeneous patterns of aged organic carbon export driven by hydrologic flow paths, soil texture, fire, and thaw in discontinuous permafrost headwaters. Glob. Biogeochem. Cycles 36, e2021GB007242 (2022).

    Google Scholar 

  37. Tiwari, T., Sponseller, R. A. & Laudon, H. The emerging role of drought as a regulator of dissolved organic carbon in boreal landscapes. Nat. Commun. 13, 5125 (2022).

    Google Scholar 

  38. Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).

    Google Scholar 

  39. Woo, M. & Mielko, C. An integrated framework of lake-stream connectivity for a semi-arid, subarctic environment. Hydrol. Process. 21, 2668–2674 (2007).

    Google Scholar 

  40. Spence, C. & Woo, M. Hydrology of subarctic Canadian shield: soil-filled valleys. J. Hydrol. 279, 151–166 (2003).

    Google Scholar 

  41. McDonnell, J. J., Spence, C., Karran, D. J., van Meerveld, H. J.(I. lja) & Harman, C. J. Fill-and-spill: a process description of runoff generation at the scale of the beholder. Water Resour. Res. 57, e2020WR027514 (2021).

    Google Scholar 

  42. Magnússon, R. Í et al. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nat. Commun. 13, 1556 (2022).

    Google Scholar 

  43. Magnússon, R. Í et al. Limited sensitivity of permafrost soils to heavy rainfall across Svalbard ecosystems. Sci. Total Environ. 943, 173696 (2024).

    Google Scholar 

  44. Hamm, A., Magnússon, R. Í, Khattak, A. J. & Frampton, A. Continentality determines warming or cooling impact of heavy rainfall events on permafrost. Nat. Commun. 14, 3578 (2023).

    Google Scholar 

  45. Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, 1–4 (2005).

  46. Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Beyond respiration: Controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018).

    Google Scholar 

  47. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, 1–11 (2009).

  48. Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    Google Scholar 

  49. Serikova, S. et al. High carbon emissions from thermokarst lakes of Western Siberia. Nat. Commun. 10, 1552 (2019).

    Google Scholar 

  50. Zabelina, S. A. et al. Carbon emission from thermokarst lakes in NE European tundra. Limnol. Oceanogr. 66, S216–S230 (2021).

    Google Scholar 

  51. Leibowitz, S. G. et al. National hydrologic connectivity classification links wetlands with stream water quality. Nat. Water 1, 370–380 (2023).

    Google Scholar 

  52. McMillan, H. et al. Global patterns in observed hydrologic processes. Nat. Water 3, 497–506 (2025).

    Google Scholar 

  53. Hayashi, M., van der Kamp, G. & Rudolph, D. L. Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. J. Hydrol. 207, 42–55 (1998).

    Google Scholar 

  54. Spence, C. The effect of storage on runoff from a headwater subarctic shield basin. ARCTIC 53, 237–247 (2000).

    Google Scholar 

  55. Bowling, L. C., Kane, D. L., Gieck, R. E., Hinzman, L. D. & Lettenmaier, D. P. The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res. 39, 1–13 (2003).

  56. Zakharova, E. A., Kouraev, A. V., Rémy, F., Zemtsov, V. A. & Kirpotin, S. N. Seasonal variability of the Western Siberia wetlands from satellite radar altimetry. J. Hydrol. 512, 366–378 (2014).

    Google Scholar 

  57. Zakharova, E. A. et al. Snow cover and spring flood flow in the Northern part of Western Siberia (the Poluy, Nadym, Pur, and Taz Rivers). J. Hydrometeorol. 12, 1498–1511 (2011).

    Google Scholar 

  58. Pokrovsky, O., Shirokova, L. & Kirpotin, S. Biogeochemistry of Thermokarst Lakes of Western Siberia. 163 (Nova Science Publishers, Inc., New York, 2014).

  59. Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).

    Google Scholar 

  60. D’Arcy, P. & Carignan, R. Influence of catchment topography on water chemistry in southeastern Québec Shield lakes. Can. J. Fish. Aquat. Sci. 54, 2215–2227 (1997).

    Google Scholar 

  61. Johnston, S. E. et al. Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes. Limnol. Oceanogr. 65, 1764–1780 (2020).

    Google Scholar 

  62. Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat. Geosci. 9, 501–504 (2016).

    Google Scholar 

  63. Kothawala, D. N., Kellerman, A. M., Catalán, N. & Tranvik, L. J. Organic matter degradation across ecosystem boundaries: the need for a unified conceptualization. Trends Ecol. Evol. 36, 113–122 (2021).

    Google Scholar 

  64. Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).

    Google Scholar 

  65. Cotner, J. B., Anderson, N. J. & Osburn, C. Accumulation of recalcitrant dissolved organic matter in aerobic aquatic systems. Limnol. Oceanogr. Lett. 7, 401–409 (2022).

    Google Scholar 

  66. Mann, P. J. et al. Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob. Change Biol. 20, 1089–1100 (2014).

    Google Scholar 

  67. Raudina, T. V. et al. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences 14, 3561–3584 (2017).

    Google Scholar 

  68. Saros, J., Northington, R., Osburn, C., Burpee, B. & Anderson, N. Thermal stratification in small arctic lakes of southwest Greenland affected by water transparency and epilimnetic temperatures: Thermal Stratification of Arctic Lakes. Limnol. Oceanogr. 61, 1530–1542 (2016).

  69. Vadeboncoeur, Y., Peterson, G., Vander Zanden, M. J. & Kalff, J. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89, 2542–2552 (2008).

    Google Scholar 

  70. Tank, S. E., Lesack, L. F. W., Gareis, J. A. L., Osburn, C. L. & Hesslein, R. H. Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnol. Oceanogr. 56, 1297–1309 (2011).

    Google Scholar 

  71. Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Écoscience 18, 204–222 (2011).

    Google Scholar 

  72. Grasset, C., Mesman, J. P., Tranvik, L. J., Maranger, R. & Sobek, S. Contribution of lake littoral zones to the continental carbon budget. Nat. Geosci. 18, 747–752 (2025).

    Google Scholar 

  73. Iversen, L. L. et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science 366, 878–881 (2019).

    Google Scholar 

  74. Bogard, M. J. & del Giorgio, P. A. The role of metabolism in modulating CO2 fluxes in boreal lakes. Glob. Biogeochem. Cycles 30, 1509–1525 (2016).

    Google Scholar 

  75. Many, G. et al. Calcite precipitation: the forgotten piece of lakes’ carbon cycle. Sci. Adv. 10, eado5924 (2024).

    Google Scholar 

  76. Li, Y. et al. Net carbon dioxide sequestration by large alkaline lakes dominates the carbon exchange of Qinghai-Tibet Plateau lakes. Commun. Earth Environ. 6, 952 (2025).

    Google Scholar 

  77. Saros, J. E. et al. Abrupt transformation of West Greenland lakes following compound climate extremes associated with atmospheric rivers. Proc. Natl. Acad. Sci. 122, e2413855122 (2025).

    Google Scholar 

  78. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J 15, vzj2016–01 (2016).

    Google Scholar 

  79. Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

    Google Scholar 

  80. Hazuková, V., Burpee, B. T., Northington, R. M., Anderson, N. J. & Saros, J. E. Earlier ice melt increases hypolimnetic oxygen despite regional warming in small Arctic lakes. Limnol. Oceanogr. Lett. 9, 258–267 (2024).

    Google Scholar 

  81. O’Donnell, J. A. et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 5, 1–10 (2024).

    Google Scholar 

  82. Karlsson, J., Verheijen, H. A., Seekell, D. A., Vachon, D. & Klaus, M. Ice-melt period dominates annual carbon dioxide evasion from clear-water Arctic lakes. Limnol. Oceanogr. Lett. 9, 112–118 (2024).

    Google Scholar 

  83. Verheijen, H., Klaus, M., Seekell, D. & Karlsson, J. Magnitude and origin of CO2 evasion from high-latitude lakes. J. Geophys. Res. Biogeosci. 127, e2021JG006768 (2022).

    Google Scholar 

  84. Li, X., Peng, S., Xi, Y., Woolway, R. I. & Liu, G. Earlier ice loss accelerates lake warming in the Northern Hemisphere. Nat. Commun. 13, 5156 (2022).

    Google Scholar 

  85. Conrad, V. Usual formulas of continentality and their limits of validity. Eos Trans. Am. Geophys. Union 27, 663–664 (1946).

    Google Scholar 

  86. Porter, C. et al. ArcticDEM - Mosaics, Version 4.1. Harvard Dataverse https://doi.org/10.7910/DVN/3VDC4W (2023).

  87. Lindsay, J. B. Whitebox GAT: A case study in geomorphometric analysis. Comput. Geosci. 95, 75–84 (2016).

    Google Scholar 

  88. Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

    Google Scholar 

  89. Buchhorn, M. et al. Copernicus global land cover layers—collection 2. Remote Sens. 12, 1044 (2020).

    Google Scholar 

  90. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Google Scholar 

  91. Brown, J. Circum-Arctic map of permafrost and ground-ice conditions: U.S. Geological Survey Circum-Pacific Map 45. p. 1 https://doi.org/10.3133/cp45 (1997).

  92. Westermann, S. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost active layer thickness for the Northern Hemisphere, v4.0. 25 Files, 867945783 B NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/D34330CE3F604E368C06D76DE1987CE5 (2024).

  93. Hazuková, V. Dataset accompanying manuscript submitted to Communications Earth & Environment titled ‘Higher but more variable annual CO2 emissions from lakes in drier Arctic landscapes’ by Hazuková et al. figshare https://doi.org/10.6084/m9.figshare.31136239.v1 (2026).

  94. Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ggplot2 R package version 2.2.0, https://mikkovihtakari.github.io/ggOceanMaps/ (2024).

Download references

Acknowledgements

Financial support was provided by the U.S. National Science Foundation (grants #2021713 and #2113908 to J.E.S.), Robert and Judith Sturgis Family Foundation (V.H.), the Swedish Research Council (grant #2020-04445 to J.K.), NASA AboVE Project (80NSSC22K1237 to D.B.). To carry out this synthesis, V.H. was supported by the Association for the Sciences of Limnology and Oceanography LOREX Fellowship. VH thanks Ryan Sponseller for discussions.

Funding

Open access funding provided by Umea University.

Author information

Authors and Affiliations

  1. Climate Change Institute, University of Maine, Orono, ME, USA

    Václava Hazuková & Jasmine E. Saros

  2. School of Biology and Ecology, University of Maine, Orono, ME, USA

    Václava Hazuková & Jasmine E. Saros

  3. Climate Impacts Research Centre (CIRC), Department of Ecology, Environment and Geoscience, Umeå University, Umeå, Sweden

    Václava Hazuková, Fredrik Alriksson, Cristian Gudasz, Jan Karlsson & Anders Jonsson

  4. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China

    Chunlin Song

  5. Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada

    Matthew J. Bogard

  6. School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA

    David E. Butman

  7. School of Geographical Sciences, University of Bristol, Bristol, UK

    Joshua F. Dean

  8. Abisko Scientific Research Station, Swedish Polar Research Secretariat, Abisko, Sweden

    Erik Lundin

  9. Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada

    Suzanne E. Tank

Authors
  1. Václava Hazuková
    View author publications

    Search author on:PubMed Google Scholar

  2. Fredrik Alriksson
    View author publications

    Search author on:PubMed Google Scholar

  3. Cristian Gudasz
    View author publications

    Search author on:PubMed Google Scholar

  4. Jan Karlsson
    View author publications

    Search author on:PubMed Google Scholar

  5. Chunlin Song
    View author publications

    Search author on:PubMed Google Scholar

  6. Matthew J. Bogard
    View author publications

    Search author on:PubMed Google Scholar

  7. David E. Butman
    View author publications

    Search author on:PubMed Google Scholar

  8. Joshua F. Dean
    View author publications

    Search author on:PubMed Google Scholar

  9. Anders Jonsson
    View author publications

    Search author on:PubMed Google Scholar

  10. Erik Lundin
    View author publications

    Search author on:PubMed Google Scholar

  11. Suzanne E. Tank
    View author publications

    Search author on:PubMed Google Scholar

  12. Jasmine E. Saros
    View author publications

    Search author on:PubMed Google Scholar

Contributions

V.H., J.K. and J.E.S. co-designed the study and acquired funding to conduct this synthesis. Data were acquired by V.H., F.A., C.G., J.K., C.S., M.J.B., D.E.B., J.F.D., A.J., E.L., S.E.T., and J.E.S. and curated by V.H., F.A., C.G., and C.S. Formal analysis and figure preparation was done by V.H. She also wrote the first draft of the manuscript; all-coathors (V.H., F.A., C.G., J.K., C.S., M.J.B., D.E.B., J.F.D., A.J., E.L., S.E.T., and J.E.S.) provided substantial and meaningful input and approved the final version.

Corresponding author

Correspondence to Václava Hazuková.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth & Environment thanks Wengang Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Nicola Colombo. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazuková, V., Alriksson, F., Gudasz, C. et al. Higher, but more variable, annual CO2 emissions from lakes in drier Arctic landscapes. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03275-8

Download citation

  • Received: 22 October 2025

  • Accepted: 29 January 2026

  • Published: 07 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03275-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene