Abstract
Land-to-water hydrological connections represent a key regulatory mechanism of carbon transport, controlling carbon dioxide (CO2) emissions from lakes; however, as of yet, there is no assessment of its role at a pan-Arctic scale across large climatic and topographical gradients. We hypothesized that hydrologically well-connected lakes in wetter regions are CO2 sources fueled by stronger lateral fluxes of external carbon relative to drier regions. However, based on data from >200 Arctic lakes, we found that lakes in drier regions have higher and more variable annual CO2 emissions (\({37.0}_{6.2}^{146.0}\) gC m-2 yr-1, \({{median}}_{Q1}^{Q3}\)) compared to lakes in wetter regions (\({8.0}_{1.7}^{17.3}\) gC m-2 yr-1), with both the lowest and the highest fluxes recorded among dryland lakes. We hypothesize that with increasing wetness, the relative proportion of fluvial emissions increases, whereas in drier landscapes where lakes often have limited stream export, carbon inputs can be retained and more efficiently emitted from lakes.
Similar content being viewed by others
Data availability
The dataset analyzed in this study is available on Figshare (10.6084/m9.figshare.31136239)93.
References
Rawlins, M. A. & Karmalkar, A. V. Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming. Cryosphere 18, 1033–1052 (2024).
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).
Hao, M. et al. Contribution of atmospheric moisture transport to winter Arctic warming. Int. J. Climatol. 39, 2697–2710 (2019).
Beel, C. R. et al. Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. Nat. Commun. 12, 1448 (2021).
Bracken, L. J. et al. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth Sci. Rev. 119, 17–34 (2013).
Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. 31, 358–370 (2020).
Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, eaaz5236 (2021).
Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).
Wang, J. et al. The surface water and ocean topography mission (SWOT) prior lake database (PLD): lake mask and operational auxiliaries. Water Resour. Res. 61, e2023WR036896 (2025).
Song, C. et al. Inland water greenhouse gas emissions offset the terrestrial carbon sink in the Northern cryosphere. Sci. Adv. 10, eadp0024 (2024).
Vonk, J. E. et al. The land–ocean Arctic carbon cycle. Nat. Rev. Earth Environ. 6, 86–105 (2025).
Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).
Bogard, M. J. et al. Negligible cycling of terrestrial carbon in many lakes of the arid circumpolar landscape. Nat. Geosci. 12, 180–185 (2019).
Osburn, C. L., Anderson, N. J., Leng, M. J., Barry, C. D. & Whiteford, E. J. Stable isotopes reveal independent carbon pools across an Arctic hydro-climatic gradient: implications for the fate of carbon in warmer and drier conditions. Limnol. Oceanogr. Lett. 4, 205–213 (2019).
Ayala-Borda, P. et al. Dominance of net autotrophy in arid landscape low relief polar lakes, Nunavut, Canada. Glob. Change Biol. 30, e17193 (2024).
Del Giorgio, P. A., Cole, J. J., Caraco, N. F. & Peters, R. H. Linking planktonic biomass and metabolism to net gas fluxes in Northern Temperate Lakes. Ecology 80, 1422–1431 (1999).
Tetzlaff, D. et al. Connectivity between landscapes and riverscapes—a unifying theme in integrating hydrology and ecology in catchment science? Hydrol. Process. 21, 1385–1389 (2007).
McCrystall, M. R., Stroeve, J., Serreze, M., Forbes, B. C. & Screen, J. A. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun. 12, 6765 (2021).
Swain, D. L. et al. Hydroclimate volatility on a warming Earth. Nat. Rev. Earth Environ. 6, 35–50 (2025).
Webster, K. E. et al. An empirical evaluation of the nutrient-color paradigm for lakes. Limnol. Oceanogr. 53, 1137–1148 (2008).
Golub, M. et al. Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs. Environ. Res. Lett. 18, 034046 (2023).
de Wit, H. A. et al. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation matters most. Limnol. Oceanogr. Lett. 3, 275–284 (2018).
Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97, 5–16 (2016).
Stets, E. G., Winter, T. C., Rosenberry, D. O. & Striegl, R. G. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resour. Res. 46, 1–16 (2010).
Basist, A., Bell, G. D. & Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Clim. 7, 1305–1315 (1994).
Gnann, S. et al. The influence of topography on the global terrestrial water cycle. Rev. Geophys. 63, e2023RG000810 (2025).
Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S. & Karlsson, J. Integrating carbon emissions from lakes and streams in a subarctic catchment. J. Geophys. Res. Biogeosci. 118, 1200–1207 (2013).
Balathandayuthabani, S., Wallin, M. B., Klemedtsson, L., Crill, P. & Bastviken, D. Aquatic carbon fluxes in a hemiboreal catchment are predictable from landscape morphology, temperature, and runoff. Limnol. Oceanogr. Lett. 8, 313–322 (2023).
Woo, M. Permafrost Hydrology. (Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-23462-0 2012).
Seekell, D., Cael, B., Lindmark, E. & Byström, P. The fractal scaling relationship for river inlets to lakes. Geophys. Res. Lett. 48, e2021GL093366 (2021).
Vachon, D., Sponseller, R. A. & Karlsson, J. Integrating carbon emission, accumulation and transport in inland waters to understand their role in the global carbon cycle. Glob. Change Biol. 27, 719–727 (2021).
Casas-Ruiz, J. P. et al. A tale of pipes and reactors: controls on the in-stream dynamics of dissolved organic matter in rivers. Limnol. Oceanogr. 62, S85–S94 (2017).
Tank, S. E., Lesack, L. F. W. & Hesslein, R. H. Northern delta lakes as summertime CO2 absorbers within the Arctic landscape. Ecosystems 12, 144–157 (2009).
Scholes, R. J. Taking the mumbo out of the jumbo: progress towards a robust basis for ecological scaling. Ecosystems 20, 4–13 (2017).
Cohen, M. J. et al. Do geographically isolated wetlands influence landscape functions? Proc. Natl. Acad. Sci. 113, 1978–1986 (2016).
Koch, J. C. et al. Heterogeneous patterns of aged organic carbon export driven by hydrologic flow paths, soil texture, fire, and thaw in discontinuous permafrost headwaters. Glob. Biogeochem. Cycles 36, e2021GB007242 (2022).
Tiwari, T., Sponseller, R. A. & Laudon, H. The emerging role of drought as a regulator of dissolved organic carbon in boreal landscapes. Nat. Commun. 13, 5125 (2022).
Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).
Woo, M. & Mielko, C. An integrated framework of lake-stream connectivity for a semi-arid, subarctic environment. Hydrol. Process. 21, 2668–2674 (2007).
Spence, C. & Woo, M. Hydrology of subarctic Canadian shield: soil-filled valleys. J. Hydrol. 279, 151–166 (2003).
McDonnell, J. J., Spence, C., Karran, D. J., van Meerveld, H. J.(I. lja) & Harman, C. J. Fill-and-spill: a process description of runoff generation at the scale of the beholder. Water Resour. Res. 57, e2020WR027514 (2021).
Magnússon, R. Í et al. Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nat. Commun. 13, 1556 (2022).
Magnússon, R. Í et al. Limited sensitivity of permafrost soils to heavy rainfall across Svalbard ecosystems. Sci. Total Environ. 943, 173696 (2024).
Hamm, A., Magnússon, R. Í, Khattak, A. J. & Frampton, A. Continentality determines warming or cooling impact of heavy rainfall events on permafrost. Nat. Commun. 14, 3578 (2023).
Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, 1–4 (2005).
Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Beyond respiration: Controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88 (2018).
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, 1–11 (2009).
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Serikova, S. et al. High carbon emissions from thermokarst lakes of Western Siberia. Nat. Commun. 10, 1552 (2019).
Zabelina, S. A. et al. Carbon emission from thermokarst lakes in NE European tundra. Limnol. Oceanogr. 66, S216–S230 (2021).
Leibowitz, S. G. et al. National hydrologic connectivity classification links wetlands with stream water quality. Nat. Water 1, 370–380 (2023).
McMillan, H. et al. Global patterns in observed hydrologic processes. Nat. Water 3, 497–506 (2025).
Hayashi, M., van der Kamp, G. & Rudolph, D. L. Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. J. Hydrol. 207, 42–55 (1998).
Spence, C. The effect of storage on runoff from a headwater subarctic shield basin. ARCTIC 53, 237–247 (2000).
Bowling, L. C., Kane, D. L., Gieck, R. E., Hinzman, L. D. & Lettenmaier, D. P. The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res. 39, 1–13 (2003).
Zakharova, E. A., Kouraev, A. V., Rémy, F., Zemtsov, V. A. & Kirpotin, S. N. Seasonal variability of the Western Siberia wetlands from satellite radar altimetry. J. Hydrol. 512, 366–378 (2014).
Zakharova, E. A. et al. Snow cover and spring flood flow in the Northern part of Western Siberia (the Poluy, Nadym, Pur, and Taz Rivers). J. Hydrometeorol. 12, 1498–1511 (2011).
Pokrovsky, O., Shirokova, L. & Kirpotin, S. Biogeochemistry of Thermokarst Lakes of Western Siberia. 163 (Nova Science Publishers, Inc., New York, 2014).
Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnol. Oceanogr. 52, 1208–1219 (2007).
D’Arcy, P. & Carignan, R. Influence of catchment topography on water chemistry in southeastern Québec Shield lakes. Can. J. Fish. Aquat. Sci. 54, 2215–2227 (1997).
Johnston, S. E. et al. Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high-latitude lakes. Limnol. Oceanogr. 65, 1764–1780 (2020).
Catalán, N., Marcé, R., Kothawala, D. N. & Tranvik, L. J. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat. Geosci. 9, 501–504 (2016).
Kothawala, D. N., Kellerman, A. M., Catalán, N. & Tranvik, L. J. Organic matter degradation across ecosystem boundaries: the need for a unified conceptualization. Trends Ecol. Evol. 36, 113–122 (2021).
Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).
Cotner, J. B., Anderson, N. J. & Osburn, C. Accumulation of recalcitrant dissolved organic matter in aerobic aquatic systems. Limnol. Oceanogr. Lett. 7, 401–409 (2022).
Mann, P. J. et al. Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob. Change Biol. 20, 1089–1100 (2014).
Raudina, T. V. et al. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences 14, 3561–3584 (2017).
Saros, J., Northington, R., Osburn, C., Burpee, B. & Anderson, N. Thermal stratification in small arctic lakes of southwest Greenland affected by water transparency and epilimnetic temperatures: Thermal Stratification of Arctic Lakes. Limnol. Oceanogr. 61, 1530–1542 (2016).
Vadeboncoeur, Y., Peterson, G., Vander Zanden, M. J. & Kalff, J. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89, 2542–2552 (2008).
Tank, S. E., Lesack, L. F. W., Gareis, J. A. L., Osburn, C. L. & Hesslein, R. H. Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnol. Oceanogr. 56, 1297–1309 (2011).
Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Écoscience 18, 204–222 (2011).
Grasset, C., Mesman, J. P., Tranvik, L. J., Maranger, R. & Sobek, S. Contribution of lake littoral zones to the continental carbon budget. Nat. Geosci. 18, 747–752 (2025).
Iversen, L. L. et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science 366, 878–881 (2019).
Bogard, M. J. & del Giorgio, P. A. The role of metabolism in modulating CO2 fluxes in boreal lakes. Glob. Biogeochem. Cycles 30, 1509–1525 (2016).
Many, G. et al. Calcite precipitation: the forgotten piece of lakes’ carbon cycle. Sci. Adv. 10, eado5924 (2024).
Li, Y. et al. Net carbon dioxide sequestration by large alkaline lakes dominates the carbon exchange of Qinghai-Tibet Plateau lakes. Commun. Earth Environ. 6, 952 (2025).
Saros, J. E. et al. Abrupt transformation of West Greenland lakes following compound climate extremes associated with atmospheric rivers. Proc. Natl. Acad. Sci. 122, e2413855122 (2025).
Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J 15, vzj2016–01 (2016).
Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).
Hazuková, V., Burpee, B. T., Northington, R. M., Anderson, N. J. & Saros, J. E. Earlier ice melt increases hypolimnetic oxygen despite regional warming in small Arctic lakes. Limnol. Oceanogr. Lett. 9, 258–267 (2024).
O’Donnell, J. A. et al. Metal mobilization from thawing permafrost to aquatic ecosystems is driving rusting of Arctic streams. Commun. Earth Environ. 5, 1–10 (2024).
Karlsson, J., Verheijen, H. A., Seekell, D. A., Vachon, D. & Klaus, M. Ice-melt period dominates annual carbon dioxide evasion from clear-water Arctic lakes. Limnol. Oceanogr. Lett. 9, 112–118 (2024).
Verheijen, H., Klaus, M., Seekell, D. & Karlsson, J. Magnitude and origin of CO2 evasion from high-latitude lakes. J. Geophys. Res. Biogeosci. 127, e2021JG006768 (2022).
Li, X., Peng, S., Xi, Y., Woolway, R. I. & Liu, G. Earlier ice loss accelerates lake warming in the Northern Hemisphere. Nat. Commun. 13, 5156 (2022).
Conrad, V. Usual formulas of continentality and their limits of validity. Eos Trans. Am. Geophys. Union 27, 663–664 (1946).
Porter, C. et al. ArcticDEM - Mosaics, Version 4.1. Harvard Dataverse https://doi.org/10.7910/DVN/3VDC4W (2023).
Lindsay, J. B. Whitebox GAT: A case study in geomorphometric analysis. Comput. Geosci. 95, 75–84 (2016).
Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).
Buchhorn, M. et al. Copernicus global land cover layers—collection 2. Remote Sens. 12, 1044 (2020).
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Brown, J. Circum-Arctic map of permafrost and ground-ice conditions: U.S. Geological Survey Circum-Pacific Map 45. p. 1 https://doi.org/10.3133/cp45 (1997).
Westermann, S. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost active layer thickness for the Northern Hemisphere, v4.0. 25 Files, 867945783 B NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/D34330CE3F604E368C06D76DE1987CE5 (2024).
Hazuková, V. Dataset accompanying manuscript submitted to Communications Earth & Environment titled ‘Higher but more variable annual CO2 emissions from lakes in drier Arctic landscapes’ by Hazuková et al. figshare https://doi.org/10.6084/m9.figshare.31136239.v1 (2026).
Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ggplot2 R package version 2.2.0, https://mikkovihtakari.github.io/ggOceanMaps/ (2024).
Acknowledgements
Financial support was provided by the U.S. National Science Foundation (grants #2021713 and #2113908 to J.E.S.), Robert and Judith Sturgis Family Foundation (V.H.), the Swedish Research Council (grant #2020-04445 to J.K.), NASA AboVE Project (80NSSC22K1237 to D.B.). To carry out this synthesis, V.H. was supported by the Association for the Sciences of Limnology and Oceanography LOREX Fellowship. VH thanks Ryan Sponseller for discussions.
Funding
Open access funding provided by Umea University.
Author information
Authors and Affiliations
Contributions
V.H., J.K. and J.E.S. co-designed the study and acquired funding to conduct this synthesis. Data were acquired by V.H., F.A., C.G., J.K., C.S., M.J.B., D.E.B., J.F.D., A.J., E.L., S.E.T., and J.E.S. and curated by V.H., F.A., C.G., and C.S. Formal analysis and figure preparation was done by V.H. She also wrote the first draft of the manuscript; all-coathors (V.H., F.A., C.G., J.K., C.S., M.J.B., D.E.B., J.F.D., A.J., E.L., S.E.T., and J.E.S.) provided substantial and meaningful input and approved the final version.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth & Environment thanks Wengang Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Nicola Colombo. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Hazuková, V., Alriksson, F., Gudasz, C. et al. Higher, but more variable, annual CO2 emissions from lakes in drier Arctic landscapes. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03275-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03275-8


