Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Fluorescence lifetime imaging microscopy

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique offering profound insights into a broad spectrum of biological processes such as metabolic imaging, protein–protein interactions and live-cell intracellular dynamics. The future of FLIM appears promising, with continuous technological advancements for time-resolved measurements pushing the boundaries for spatiotemporal information. However, the growth of the FLIM community has been slower, owing to the requirement for specialized training and technology. This Primer aims to address this gap by providing a comprehensive overview of FLIM principles, methods and analysis. We discuss various methods for measuring fluorescence lifetimes, including time-tagging and phase-modulation shift methods, along with their implementations and setup variations. Additionally, we explore different avenues for data analysis, with a specific focus on the phasor approach and its crucial considerations. Furthermore, we present a range of applications demonstrating versatility and usability of FLIM. Limitations and optimization strategies are also discussed, covering methodological constraints, equipment limitations and potential errors, along with their solutions. By sharing our expertise, we aim to expand FLIM to broader audiences while reinforcing concepts within the FLIM community. This Primer seeks to inspire bioimaging researchers to fully embrace FLIM, thereby advancing our understanding of complex biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of fluorescence lifetime imaging microscopy basic concepts.
Fig. 2: Fluorescence lifetime imaging microscopy methods and implementations.
Fig. 3: Analysis of fluorescence lifetime with the phasor approach.
Fig. 4: FLIM-NADH in cells and tissues.
Fig. 5: Phasor-FLIM applications.
Fig. 6: Fluorescence lifetime imaging microscopy limitations and workarounds.

Similar content being viewed by others

References

  1. Boens, N. et al. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal. Chem. 79, 2137–2149 (2007).

    Article  Google Scholar 

  2. Mamontova, A. V. et al. Bright GFP with subnanosecond fluorescence lifetime. Sci. Rep. 8, 1–5 (2018).

    Article  Google Scholar 

  3. Kalinina, S. et al. Correlative NAD(P)H-FLIM and oxygen sensing-PLIM for metabolic mapping. J. Biophoton. 9, 800–811 (2016).

    Article  Google Scholar 

  4. Wong, A. Y. H., Wang, F., Kam, C. & Chen, S. in Aggregation-Induced Emission (AIE) (eds Xu, J., Chua, M. H. & Tang, B. Z.) 449–488 (Elsevier, 2022).

  5. Ma, J., Gu, Y., Ma, D., Lu, W. & Qiu, J. Insights into AIE materials: a focus on biomedical applications of fluorescence. Front. Chem. 10, 985578 (2022).

    Article  ADS  Google Scholar 

  6. Jameson, D. M. Introduction to Fluorescence (CRC Press, Taylor & Francis Group, 2014).

  7. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer US, 2006).

  8. Tortarolo, G. et al. Compact and effective photon-resolved image scanning microscope. Adv. Photon. 6, 016003 (2024).

    Article  ADS  Google Scholar 

  9. Lanzanò, L. et al. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun. 6, 6701 (2015). This paper introduces the value of phasor plot analysis on fluorescence lifetime imaging microscopy-stimulated emission depletion data, demonstrating the simplicity of the method and its improvement in resolution or compatibility with life conditions.

    Article  ADS  Google Scholar 

  10. Scipioni, L., Rossetta, A., Tedeschi, G. & Gratton, E. Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat. Methods 18, 542–550 (2021). This paper introduces a novel technique combining hyperspectral and time-resolved imaging through phasor analysis.

    Article  Google Scholar 

  11. Popleteeva, M. et al. Fast and simple spectral FLIM for biochemical and medical imaging. Opt. Express 23, 23511–23525 (2015).

    Article  ADS  Google Scholar 

  12. Rossetta, A. et al. The BrightEyes-TTM as an open-source time-tagging module for democratising single-photon microscopy. Nat. Commun. 13, 7406 (2022).

    Article  ADS  Google Scholar 

  13. Gerritsen, H. C., Asselbergs, Ma. H., Agronskaia, A. V. & Van Sark, W. G. J. H. M. Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Microsc. 206, 218–224 (2002).

    Article  MathSciNet  Google Scholar 

  14. Gratton, E., Breusegem, S., Sutin, J., Ruan, Q. & Barry, N. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J. Biomed. Opt. 8, 381–390 (2003).

    Article  ADS  Google Scholar 

  15. Becker, W. et al. FRET measurements by TCSPC laser scanning microscopy. in Photon Migration, Optical Coherence Tomography, and Microscopy Vol. 4431, 94–98 (SPIE, 2001).

  16. Serafino, M. J. & Jo, J. A. Direct frequency domain fluorescence lifetime imaging using simultaneous ultraviolet and visible excitation. Biomed. Opt. Express 14, 1608–1625 (2023).

    Article  Google Scholar 

  17. Auksorius, E. et al. Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt. Lett. 33, 113–115 (2008).

    Article  ADS  Google Scholar 

  18. Bückers, J., Wildanger, D., Vicidomini, G., Kastrup, L. & Hell, S. W. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express 19, 3130–3143 (2011).

    Article  ADS  Google Scholar 

  19. Lukinavičius, G. et al. Stimulated emission depletion microscopy. Nat. Rev. Methods Primers 4, 1–22 (2024).

    Article  Google Scholar 

  20. Hirvonen, L. M. & Suhling, K. Wide-field TCSPC: methods and applications. Meas. Sci. Technol. 28, 012003 (2017).

    Article  ADS  Google Scholar 

  21. Chen, H. & Gratton, E. A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy. Microscopy Res. Tech. 76, 282–289 (2013).

    Article  Google Scholar 

  22. Chen, H., Holst, G. & Gratton, E. Modulated CMOS camera for fluorescence lifetime microscopy. Microscopy Res. Tech. 78, 1075–1081 (2015).

    Article  Google Scholar 

  23. Ulku, A. C. et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).

    Article  Google Scholar 

  24. Buranachai, C., Kamiyama, D., Chiba, A., Williams, B. D. & Clegg, R. M. Rapid frequency-domain FLIM spinning disk confocal microscope: lifetime resolution, image improvement and wavelet analysis. J. Fluoresc. 18, 929–942 (2008).

    Article  Google Scholar 

  25. van Munster, E. B., Goedhart, J., Kremers, G. J., Manders, E. M. M. & Gadella, T. W. J. Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy. Cytometry A 71, 207–214 (2007).

    Article  Google Scholar 

  26. Li, R. et al. Digital scanned laser light-sheet fluorescence lifetime microscopy with wide-field time-gated imaging. J. Microscopy 279, 69–76 (2020).

    Article  Google Scholar 

  27. Hirvonen, L. M. et al. Lightsheet fluorescence lifetime imaging microscopy with wide‐field time‐correlated single photon counting. J. Biophoton. 13, e201960099 (2020).

    Article  Google Scholar 

  28. Samimi, K. et al. Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array. J. Biomed. Opt. 28, 066502 (2023).

    Article  ADS  Google Scholar 

  29. Dunsing-Eichenauer, V. Fast volumetric fluorescence lifetime imaging of multicellular systems using single-objective light-sheet microscopy. Preprint at bioRxiv https://doi.org/10.1101/2024.03.24.586451 (2024).

  30. Smith, J. T. et al. In vivo quantitative FRET small animal imaging: intensity versus lifetime-based FRET. Biophys. Rep. 3, 100110 (2023).

    Google Scholar 

  31. Greger, K., Neetz, M. J., Reynaud, E. G. & Stelzer, E. H. K. Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt. Express 19, 20743–20750 (2011).

    Article  ADS  Google Scholar 

  32. Zhao, Q., Young, I. T. & de Jong, J. G. S. Photon budget analysis for fluorescence lifetime imaging microscopy. J. Biomed. Opt. 16, 086007 (2011).

    Article  ADS  Google Scholar 

  33. Hirvonen, L. M. & Suhling, K. Fast timing techniques in FLIM applications. Front. Phys. 8, 161 (2020).

    Article  Google Scholar 

  34. Marsden, M. et al. FLImBrush: dynamic visualization of intraoperative free-hand fiber-based fluorescence lifetime imaging. Biomed. Opt. Express 11, 5166–5180 (2020).

    Article  Google Scholar 

  35. Lagarto, J. L., Shcheslavskiy, V., Pavone, F. S. & Cicchi, R. Real-time fiber-based fluorescence lifetime imaging with synchronous external illumination: a new path for clinical translation. J. Biophoton. 13, e201960119 (2020).

    Article  Google Scholar 

  36. Lagarto, J. L. et al. Real-time multispectral fluorescence lifetime imaging using single photon avalanche diode arrays. Sci. Rep. 10, 8116 (2020).

    Article  ADS  Google Scholar 

  37. Becker, W. in Encyclopedia of Cell Biology 2nd edn (eds Bradshaw, R. A., Hart, G. W. & Stahl, P. D.) 133–151 (Academic Press, 2023).

  38. Becker, W. Advanced Time-Correlated Single Photon Counting Applications Vol. 111 (Springer International Publishing, 2015).

  39. de Grauw, C. J. & Gerritsen, H. C. Multiple time-gate module for fluorescence lifetime imaging. Appl. Spectrosc. 55, 670–678 (2001).

    Article  ADS  Google Scholar 

  40. Becker, W. The bh TCSPC Handbook (Becker & Hickl GmbH, 2023). The TCSPC Handbook is a comprehensive text for understanding fundamental and advanced concepts for fluorescent lifetime imaging microscopy.

  41. Tancock, S., Arabul, E. & Dahnoun, N. A review of new time-to-digital conversion techniques. IEEE Trans. Instrum. Meas. 68, 3406–3417 (2019).

    Article  ADS  Google Scholar 

  42. Machado, R., Cabral, J. & Alves, F. S. Recent developments and challenges in FPGA-based time-to-digital converters. IEEE Trans. Instrum. Meas. 68, 4205–4221 (2019).

    Article  ADS  Google Scholar 

  43. Colyer, R. A., Lee, C. & Gratton, E. A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc. Res. Tech. 71, 201–213 (2008).

    Article  Google Scholar 

  44. Buurman, E. P. et al. Fluorescence lifetime imaging using a confocal laser scanning microscope. Scanning 14, 155–159 (1992).

    Article  Google Scholar 

  45. Sytsma, V., Grauw, D. & Gerritsen Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J. Microscopy 191, 39–51 (1998).

    Article  Google Scholar 

  46. Zhou, X., Bec, J., Ehrlich, K., Garcia, A. A. & Marcu, L. Pulse-sampling fluorescence lifetime imaging: evaluation of photon economy. Opt. Lett. 48, 4578–4581 (2023).

    Article  ADS  Google Scholar 

  47. Steingraber, O. J. & Berlman, I. B. Versatile technique for measuring fluorescence decay times in the nanosecond region. Rev. Sci. Instrum. 34, 524–529 (1963).

    Article  ADS  Google Scholar 

  48. Dow, X. Y., Sullivan, S. Z., Muir, R. D. & Simpson, G. J. Video-rate two-photon excited fluorescence lifetime imaging system with interleaved digitization. Opt. Lett. 40, 3296–3299 (2015).

    Article  ADS  Google Scholar 

  49. Giacomelli, M. G., Sheikine, Y., Vardeh, H., Connolly, J. L. & Fujimoto, J. G. Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging. Biomed. Opt. Express 6, 4317–4325 (2015).

    Article  Google Scholar 

  50. Eibl, M. et al. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate. Biomed. Opt. Express 8, 3132–3142 (2017).

    Article  Google Scholar 

  51. Zhou, X., Bec, J., Yankelevich, D. & Marcu, L. Multispectral fluorescence lifetime imaging device with a silicon avalanche photodetector. Opt. Express 29, 20105–20120 (2021).

    Article  ADS  Google Scholar 

  52. Gadella, T. W. J., Jovin, T. M. & Clegg, R. M. Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale. Biophys. Chem. 48, 221–239 (1993).

    Article  Google Scholar 

  53. Liu, R. et al. Compact, non-invasive frequency domain lifetime differentiation of collagens and elastin. Sens. Actuators B Chem. 219, 283–293 (2015).

    Article  ADS  Google Scholar 

  54. Zhang, Y. et al. Instant FLIM enables 4D in vivo lifetime imaging of intact and injured zebrafish and mouse brains. Optica 8, 885–897 (2021).

    Article  ADS  Google Scholar 

  55. Iwata, T., Taga, T. & Mizuno, T. FPGA-based photon-counting phase-modulation fluorometer and a brief comparison with that operated in a pulsed-excitation mode. Opt. Rev. 25, 94–101 (2018).

    Article  Google Scholar 

  56. Serafino, M. J., Applegate, B. E. & Jo, J. A. Direct frequency domain fluorescence lifetime imaging using field programmable gate arrays for real time processing. Rev. Sci. Instrum. 91, 033708 (2020).

    Article  ADS  Google Scholar 

  57. Kellerer, T. et al. Comprehensive investigation of parameters influencing fluorescence lifetime imaging microscopy in frequency- and time-domain illustrated by phasor plot analysis. Int. J. Mol. Sci. 23, 15885 (2022).

    Article  Google Scholar 

  58. Kumar, S. et al. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging. Opt. Express 15, 12548–12561 (2007).

    Article  ADS  Google Scholar 

  59. Dvornikov, A., Malacrida, L. & Gratton, E. The DIVER microscope for imaging in scattering media. Methods Protoc. 2, 53 (2019).

    Article  Google Scholar 

  60. Yamazaki, I., Tamai, N., Kume, H., Tsuchiya, H. & Oba, K. Microchannel‐plate photomultiplier applicability to the time‐correlated photon‐counting method. Rev. Sci. Instrum. 56, 1187–1194 (1985).

    Article  ADS  Google Scholar 

  61. Becker, W., Su, B., Holub, O. & Weisshart, K. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microscopy Res. Tech. 74, 804–811 (2011).

    Article  Google Scholar 

  62. Mitchell, A. C., Wall, J. E., Murray, J. G. & Morgan, C. G. Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera. J. Microsc. 206, 233–238 (2002).

    Article  MathSciNet  Google Scholar 

  63. Mitchell, A. C., Wall, J. E., Murray, J. G. & Morgan, C. G. Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging. J. Microsc. 206, 225–232 (2002).

    Article  MathSciNet  Google Scholar 

  64. Seo, M.-W. et al. A time-resolved four-tap lock-in pixel CMOS image sensor for real-time fluorescence lifetime imaging microscopy. IEEE J. Solid-State Circuits 53, 2319–2330 (2018).

    Article  ADS  Google Scholar 

  65. McGinty, J. et al. Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM. J. Phys. D Appl. Phys. 42, 135103 (2009).

    Article  ADS  Google Scholar 

  66. Requejo-Isidro, J. et al. High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt. Lett. 29, 2249–2251 (2004).

    Article  ADS  Google Scholar 

  67. Dowling, K., Hyde, S. C. W., Dainty, J. C., French, P. M. W. & Hares, J. D. in Advances in Optical Imaging and Photon Migration (Optica Publishing Group, 1996).

  68. Bruschini, C., Homulle, H., Antolovic, I. M., Burri, S. & Charbon, E. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl. 8, 87 (2019).

    Article  ADS  Google Scholar 

  69. Rochas, A. et al. First fully integrated 2-D array of single-photon detectors in standard CMOS technology. IEEE Photon. Technol. Lett. 15, 963–965 (2003).

    Article  ADS  Google Scholar 

  70. Lee, J. H. et al. Simultaneous label-free autofluorescence and multi-harmonic imaging reveals in vivo structural and metabolic changes in murine skin. Biomed. Opt. Express 10, 5431–5444 (2019).

    Article  Google Scholar 

  71. Ung, T. P. L. et al. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin. Sci. Rep. 11, 22171 (2021).

    Article  ADS  Google Scholar 

  72. Pouli, D. et al. Label-free, high-resolution optical metabolic imaging of human cervical precancers reveals potential for intraepithelial neoplasia diagnosis. Cell Rep. Med 1, 100017 (2020).

    Article  Google Scholar 

  73. Fast, A. et al. Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Sci. Rep. 10, 18093 (2020).

    Article  Google Scholar 

  74. Ranjit, S. et al. Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy. Biomed. Opt. Express 8, 3143–3154 (2017).

    Article  Google Scholar 

  75. Sánchez-Hernández, A., Polleys, C. M. & Georgakoudi, I. Formalin fixation and paraffin embedding interfere with the preservation of optical metabolic assessments based on endogenous NAD(P)H and FAD two-photon excited fluorescence. Biomed. Opt. Express 14, 5238–5253 (2023).

    Article  Google Scholar 

  76. York, E. M., Weilinger, N. L., LeDue, J. M. & MacVicar, B. A. Green fluorescent protein emission obscures metabolic fluorescent lifetime imaging of NAD(P)H. Biomed. Opt. Express 10, 4381–4394 (2019).

    Article  Google Scholar 

  77. Kim, S. M. et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov. 8, 866–883 (2018).

    Article  Google Scholar 

  78. Ranjit, S., Malacrida, L., Jameson, D. M. & Gratton, E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat. Protoc. 13, 1979–2004 (2018).

    Article  Google Scholar 

  79. Shemiakina, I. I. et al. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun. 3, 1204 (2012).

    Article  ADS  Google Scholar 

  80. Moriya, H. The expression level and cytotoxicity of green fluorescent protein are modulated by an additional N-terminal sequence. AIMS Biophys. 7, 121–132 (2020).

    Article  Google Scholar 

  81. Liu, H. S., Jan, M. S., Chou, C. K., Chen, P. H. & Ke, N. J. Is green fluorescent protein toxic to the living cells? Biochem. Biophys. Res. Commun. 260, 712–717 (1999).

    Article  Google Scholar 

  82. Ansari, A. M. et al. Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev. 12, 553–559 (2016).

    Article  Google Scholar 

  83. Gunther, G., Malacrida, L., Jameson, D. M., Gratton, E. & Sánchez, S. A. LAURDAN since weber: the quest for visualizing membrane heterogeneity. Acc. Chem. Res. 54, 976–987 (2021).

    Article  Google Scholar 

  84. Malacrida, L., Jameson, D. M. & Gratton, E. A multidimensional phasor approach reveals LAURDAN photophysics in NIH-3T3 cell membranes. Sci. Rep. 7, 9215 (2017).

    Article  ADS  Google Scholar 

  85. Köllner, M. & Wolfrum, J. How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200, 199–204 (1992).

    Article  ADS  Google Scholar 

  86. Liu, X. et al. Fast fluorescence lifetime imaging techniques: a review on challenge and development. J. Innov. Opt. Health Sci. 12, 1930003 (2019).

    Article  Google Scholar 

  87. Sun, Y., Day, R. N. & Periasamy, A. Investigating protein–protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat. Protoc. 6, 1324–1340 (2011).

    Article  Google Scholar 

  88. Xiao, D. et al. On synthetic instrument response functions of time-correlated single-photon counting based fluorescence lifetime imaging analysis. Front. Phys. https://doi.org/10.3389/fphy.2021.635645 (2021).

  89. Gómez-Sánchez, A. et al. Blind instrument response function identification from fluorescence decays. Biophys. Rep. 4, 100155 (2024).

    Google Scholar 

  90. Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 16, 175–178 (2019).

    Article  Google Scholar 

  91. Trinh, A. L. et al. Fast single-cell biochemistry: theory, open source microscopy and applications. Methods Appl. Fluoresc. 7, 044001 (2019).

    Article  ADS  Google Scholar 

  92. Weber, G. Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements. J. Phys. Chem 85, 949–953 (1981). In this work, the author sets the fundamental mathematics for the phasor plots analysis.

    Article  Google Scholar 

  93. Jameson, D. M., Gratton, E. & Hall, R. D. The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl. Spectrosc. Rev 20, 55–106 (1984). In the appendix of Jameson et al., the authors introduce for the first time to our knowledge the graphical representation of the phasor plots for a fluorescent lifetime.

    Article  ADS  Google Scholar 

  94. Digman, M. A., Caiolfa, V. R., Zamai, M. & Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 94, L14–L16 (2008).

    Article  Google Scholar 

  95. Vallmitjana, A., Torrado, B., Dvornikov, A., Ranjit, S. & Gratton, E. Blind resolution of lifetime components in individual pixels of fluorescence lifetime images using the phasor approach. J. Phys. Chem. B 124, 10126–10137 (2020).

    Article  Google Scholar 

  96. Vallmitjana, A. et al. Resolution of 4 components in the same pixel in FLIM images using the phasor approach. Methods Appl. Fluoresc. 8, 035001 (2020).

    Article  ADS  Google Scholar 

  97. Malacrida, L., Ranjit, S., Jameson, D. M. & Gratton, E. The phasor plot: a universal circle to advance fluorescence lifetime analysis and interpretation. Annu. Rev. Biophys 50, 575–593 (2021). In this comprehensive review, the authors introduce the phasor plot for FLIM and illustrate the reader with examples of phasor plot values in understanding FLIM data.

    Article  Google Scholar 

  98. Torrado, B., Malacrida, L. & Ranjit, S. Linear combination properties of the phasor space in fluorescence imaging. Sensors 22, 999 (2022). If the reader is interested in understanding phasor plot rules and properties, this review covers all the information users need to know about phasor plots.

    Article  ADS  Google Scholar 

  99. Ranjit, S., Datta, R., Dvornikov, A. & Gratton, E. Multicomponent analysis of phasor plot in a single pixel to calculate changes of metabolic trajectory in biological systems. J. Phys. Chem. A 123, 9865–9873 (2019).

    Article  Google Scholar 

  100. Silberberg, M. & Grecco, H. E. pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments. Methods Appl. Fluoresc. 5, 024016 (2017).

    Article  ADS  Google Scholar 

  101. Wang, P. et al. Complex wavelet filter improves FLIM phasors for photon starved imaging experiments. Biomed. Opt. Express 12, 3463–3473 (2021).

    Article  Google Scholar 

  102. Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A. & Skala, M. C. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 25, 1 (2020).

    Article  Google Scholar 

  103. Maus, M. et al. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal. Chem. 73, 2078–2086 (2001).

    Article  Google Scholar 

  104. Straume, M., Frasier-Cadoret, S. G. & Johnson, M. L. in Topics in Fluorescence Spectroscopy: Principles (ed. Lakowicz, J. R.) 177–240 (Springer US, 2002).

  105. Bajzer, Ž., Therneau, T. M., Sharp, J. C. & Prendergast, F. G. Maximum likelihood method for the analysis of time-resolved fluorescence decay curves. Eur. Biophys. J. 20, 247–262 (1991).

    Article  Google Scholar 

  106. Kaye, B., Foster, P. J., Yoo, T. Y. & Needleman, D. J. Developing and testing a Bayesian analysis of fluorescence lifetime measurements. PLoS ONE 12, e0169337 (2017).

    Article  Google Scholar 

  107. Rowley, M. I., Barber, P. R., Coolen, A. C. C. & Vojnovic, B. Bayesian analysis of fluorescence lifetime imaging data. in Multiphoton Microscopy in the Biomedical Sciences XI Vol. 7903, 339–350 (SPIE, 2011).

  108. Wang, S., Chacko, J. V., Sagar, A. K., Eliceiri, K. W. & Yuan, M. Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy. Biomed. Opt. Express 10, 5497–5517 (2019).

    Article  Google Scholar 

  109. O’Connor, D. V. & Phillips, D. (eds) in Time-Correlated Single Photon Counting iii (Academic Press, 1984).

  110. Pelet, S., Previte, M. J. R., Laiho, L. H. & So, P. T. C. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation. Biophys. J. 87, 2807–2817 (2004).

    Article  ADS  Google Scholar 

  111. Verveer, P. J., Squire, A. & Bastiaens, P. I. H. Global analysis of fluorescence lifetime imaging microscopy data. Biophys. J. 78, 2127–2137 (2000).

    Article  Google Scholar 

  112. Warren, S. C. et al. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets. PLoS ONE 8, e70687 (2013).

    Article  ADS  Google Scholar 

  113. Fereidouni, F., Gorpas, D., Ma, D., Fatakdawala, H. & Marcu, L. Rapid fluorescence lifetime estimation with modified phasor approach and Laguerre deconvolution: a comparative study. Methods Appl. Fluoresc. 5, 035003 (2017).

    Article  ADS  Google Scholar 

  114. Silva, S. F., Domingues, J. P. & Morgado, A. M. Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging? Precision and accuracy of double-exponential decay measurements with low total counts. PLoS ONE 14, e0216894 (2019).

    Article  Google Scholar 

  115. Ballew, R. M. & Demas, J. N. An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal. Chem. 61, 30–33 (1989).

    Article  Google Scholar 

  116. Li, D.-U., Rae, B. R., Andrews, R., Arlt, J. & Henderson, R. K. Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method. J. Biomed. Opt. 15, 017006 (2010).

    Article  ADS  Google Scholar 

  117. Laine, R. F., Poudel, C. & Kaminski, C. F. A method for the fast and photon-efficient analysis of time-domain fluorescence lifetime image data over large dynamic ranges. J. Microscopy 287, 138–147 (2022).

    Article  Google Scholar 

  118. Isenberg, I. & Dyson, R. D. The analysis of fluorescence decay by a method of moments. Biophys. J. 9, 1337–1350 (1969).

    Article  Google Scholar 

  119. Bay, Z. Calculation of decay times from coincidence experiments. Phys. Rev. 77, 419–419 (1950).

    Article  ADS  Google Scholar 

  120. Kim, B., Lee, M., Park, B., Lee, S. & Won, Y. Referencing techniques for high-speed confocal fluorescence lifetime imaging microscopy (FLIM) based on analog mean-delay (AMD) method. in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV Vol. 10068, 229–234 (SPIE, 2017).

  121. Won, Y. et al. High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method. Opt. Express 19, 3396–3405 (2011).

    Article  ADS  Google Scholar 

  122. Wu, G., Nowotny, T., Zhang, Y., Yu, H.-Q. & Li, D. D.-U. Artificial neural network approaches for fluorescence lifetime imaging techniques. Opt. Lett. 41, 2561–2564 (2016).

    Article  ADS  Google Scholar 

  123. Yao, R., Ochoa, M., Yan, P. & Intes, X. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing — a deep learning approach. Light Sci. Appl. 8, 26 (2019).

    Article  ADS  Google Scholar 

  124. Smith, J. T. et al. Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proc. Natl Acad. Sci. USA 116, 24019–24030 (2019).

    Article  ADS  Google Scholar 

  125. Xiao, D., Chen, Y. & Li, D. D.-U. One-dimensional deep learning architecture for fast fluorescence lifetime imaging. IEEE J. Sel. Top. Quantum Electron. 27, 1–10 (2021).

    Article  Google Scholar 

  126. Taimori, A. et al. Fast and robust single-exponential decay recovery from noisy fluorescence lifetime imaging. IEEE Trans. Biomed. Eng. 69, 3703–3716 (2022).

    Article  Google Scholar 

  127. Zickus, V. et al. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci. Rep. 10, 20986 (2020).

    Article  Google Scholar 

  128. Guo, S. et al. FLIM data analysis based on Laguerre polynomial decomposition and machine-learning. J. Biomed. Opt. 26, 022909 (2021).

    Article  ADS  Google Scholar 

  129. Bernardi, M. & Cardarelli, F. Phasor identifier: a cloud-based analysis of phasor-FLIM data on Python notebooks. Biophys. Rep. 3, 100135 (2023).

    Google Scholar 

  130. Gao, D. et al. FLIMJ: an open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLoS ONE 15, e0238327 (2020).

    Article  Google Scholar 

  131. Ranjit, S. et al. Phasor approach to autofluorescence lifetime imaging FLIM can be a quantitative biomarker of chronic renal parenchymal injury. Kidney Int. 98, 1341–1346 (2020).

    Article  Google Scholar 

  132. Crosignani, V., Jahid, S., Dvornikov, A. S. & Gratton, E. A deep tissue fluorescence imaging system with enhanced SHG detection capabilities. Microsc. Res. Tech. 77, 368–373 (2014).

    Article  Google Scholar 

  133. Stringari, C. et al. Metabolic trajectory of cellular differentiation in small intestine by phasor fluorescence lifetime microscopy of NADH. Sci. Rep. 2, 568 (2012).

    Article  Google Scholar 

  134. Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl Acad. Sci. USA 104, 19494–19499 (2007).

    Article  ADS  Google Scholar 

  135. Winkler, U. & Hirrlinger, J. Crosstalk of signaling and metabolism mediated by the NAD(+)/NADH redox state in brain cells. Neurochem. Res. 40, 2394–2401 (2015).

    Article  Google Scholar 

  136. Kolb, D. A. & Weber, G. Quantitative demonstration of the reciprocity of ligand effects in the ternary complex of chicken heart lactate dehydrogenase with nicotinamide adenine dinucleotide oxalate. Biochemistry 14, 4471–4476 (1975).

    Article  Google Scholar 

  137. Ma, N., Digman, M. A., Malacrida, L. & Gratton, E. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Biomed. Opt. Express 7, 2441–2452 (2016). This paper introduces a phasor plot-based method for quantitative measurement of fluorophore concentration using fluorescence lifetime imaging microscopy-phasor linear combination rules.

    Article  Google Scholar 

  138. Ranjit, S., Malacrida, L., Stakic, M. & Gratton, E. Determination of the metabolic index using the fluorescence lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach. J. Biophoton. 12, e201900156 (2019).

    Article  Google Scholar 

  139. Stringari, C., Nourse, J. L., Flanagan, L. A. & Gratton, E. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS ONE 7, e48014 (2012).

    Article  ADS  Google Scholar 

  140. Sánchez-Ramírez, E. et al. Coordinated metabolic transitions and gene expression by NAD+ during adipogenesis. J. Cell Biol. 221, e202111137 (2022).

    Article  Google Scholar 

  141. Georgakoudi, I. & Quinn, K. P. Label-free optical metabolic imaging in cells and tissues. Annu. Rev. Biomed. Eng 25, annurev-bioeng-071516–044730 (2023).

    Article  Google Scholar 

  142. Datta, R., Heylman, C., George, S. C. & Gratton, E. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes. Biomed. Opt. Express 7, 1690–1701 (2016).

    Article  Google Scholar 

  143. Kolenc, O. I. & Quinn, K. P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal. 30, 875–889 (2019).

    Article  Google Scholar 

  144. Mah, E. J., Lefebvre, A. E. Y. T., McGahey, G. E., Yee, A. F. & Digman, M. A. Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility. Sci. Rep. 8, 17094 (2018).

    Article  ADS  Google Scholar 

  145. Murata, M. M. et al. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol. Biol. Cell 30, 2584–2597 (2019).

    Article  Google Scholar 

  146. Lefebvre, A. E. Y. T., Ma, D., Kessenbrock, K., Lawson, D. A. & Digman, M. A. Automated segmentation and tracking of mitochondria in live-cell time-lapse images. Nat. Methods 18, 1091–1102 (2021).

    Article  Google Scholar 

  147. Trinh, A. L. et al. Tracking functional tumor cell subpopulations of malignant glioma by phasor fluorescence lifetime imaging microscopy of NADH. Cancers 9, 168 (2017).

    Article  Google Scholar 

  148. Liggett, J. R. et al. Oral N-acetylcysteine decreases IFN-γ production and ameliorates ischemia–reperfusion injury in steatotic livers. Front. Immunol. 13, 898799 (2022).

    Article  Google Scholar 

  149. Tentori, P. et al. Fluorescence lifetime microscopy unveils the supramolecular organization of liposomal doxorubicin. Nanoscale 14, 8901–8905 (2022).

    Article  Google Scholar 

  150. Vallmitjana, A., Torrado, B. & Gratton, E. Phasor-based image segmentation: machine learning clustering techniques. Biomed. Opt. Express 12, 3410 (2021). In this paper, the authors introduced the use of machine-learning tools for the segmentation of phasor clusters.

    Article  Google Scholar 

  151. Vu, T. et al. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nat. Commun. 13, 169 (2022).

    Article  ADS  Google Scholar 

  152. Frei, M. S., Koch, B., Hiblot, J. & Johnsson, K. Live-cell fluorescence lifetime multiplexing using synthetic fluorescent probes. ACS Chem. Biol. 17, 1321–1327 (2022).

    Article  Google Scholar 

  153. Frei, M. S. et al. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat. Methods 19, 65–70 (2022).

    Article  Google Scholar 

  154. Weber, G. & Farris, F. J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18, 3075–3078 (1979).

    Article  Google Scholar 

  155. Parasassi, T., De Stasio, G., d’Ubaldo, A. & Gratton, E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys. J. 57, 1179–1186 (1990).

    Article  Google Scholar 

  156. Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    Article  ADS  Google Scholar 

  157. Malacrida, L. & Gratton, E. Laurdan fluorescence and phasor plots reveal the effects of a H2O2 bolus in NIH-3T3 fibroblast membranes dynamics and hydration. Free Radic. Biol. Med. 128, 144–156 (2018). The authors demonstrate the value of fluorescence lifetime imaging microscopy-phasor plots for understanding the membrane dynamics in cells when treated with hydrogen peroxide.

    Article  Google Scholar 

  158. Malacrida, L. et al. Spectral phasor analysis of Laurdan fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim. Biophys. Acta Biomembr. 1858, 2625–2635 (2016).

    Article  Google Scholar 

  159. Bagatolli, L. A. in Fluorescent Methods to Study Biological Membranes (eds Mély, Y. & Duportail, G.) 3–35 (Springer Berlin Heidelberg, 2013).

  160. Herrera-Ochoa, D., Pacheco-Liñán, P. J., Bravo, I. & Garzón-Ruiz, A. A novel quantum dot-based pH probe for long-term fluorescence lifetime imaging microscopy experiments in living cells. ACS Appl. Mater. Interfaces 14, 2578–2586 (2022).

    Article  Google Scholar 

  161. Bleeker, J. et al. Quinolinium-based fluorescent probes for dynamic pH monitoring in aqueous media at high pH using fluorescence lifetime imaging. ACS Sens. 8, 2050–2059 (2023).

    Article  Google Scholar 

  162. Shimolina, L. et al. Fluorescence lifetime-based pH mapping of tumors in vivo using genetically encoded sensor SypHerRed. Biophys. J. 121, 1156–1165 (2022).

    Article  ADS  Google Scholar 

  163. Rennick, J. J., Nowell, C. J., Pouton, C. W. & Johnston, A. P. R. Resolving subcellular pH with a quantitative fluorescent lifetime biosensor. Nat. Commun. 13, 6023 (2022).

    Article  ADS  Google Scholar 

  164. Goryashchenko, A. S. et al. FLIM-based intracellular and extracellular pH measurements using genetically encoded pH sensor. Biosensors 11, 340 (2021).

    Article  Google Scholar 

  165. Belashov, A. V. et al. Automatic segmentation of lysosomes and analysis of intracellular pH with Radachlorin photosensitizer and FLIM. Biochem. Biophys. Res. Commun. 710, 149835 (2024).

    Article  Google Scholar 

  166. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K. & Johnson, M. L. Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium 13, 131–147 (1992).

    Article  Google Scholar 

  167. Lakowicz, J. R., Szmacinski, H. & Johnson, M. L. Calcium imaging using fluorescence lifetimes and long-wavelength probes. J. Fluoresc. 2, 47–62 (1992).

    Article  Google Scholar 

  168. Hirshfield, K. M., Toptygin, D., Packard, B. S. & Brand, L. Dynamic fluorescence measurements of two-state systems: applications to calcium-chelating probes. Anal. Biochem. 209, 209–218 (1993).

    Article  Google Scholar 

  169. Zheng, K., Jensen, T. P. & Rusakov, D. A. Monitoring intracellular nanomolar calcium using fluorescence lifetime imaging. Nat. Protoc. 13, 581–597 (2018).

    Article  Google Scholar 

  170. van der Linden, F. H. et al. A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nat. Commun. 12, 7159 (2021).

    Article  ADS  Google Scholar 

  171. Celli, A. et al. The epidermal Ca2+ gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys. J. 98, 911–921 (2010).

    Article  ADS  Google Scholar 

  172. Meyer, J., Untiet, V., Fahlke, C., Gensch, T. & Rose, C. R. Quantitative determination of cellular [Na+] by fluorescence lifetime imaging with CoroNaGreen. J. Gen. Physiol. 151, 1319–1331 (2019).

    Article  Google Scholar 

  173. Schwarze, T. et al. Fluorescence lifetime-based sensing of sodium by an optode. Chem. Commun. 50, 14167–14170 (2014).

    Article  Google Scholar 

  174. Sun, Y. & Periasamy, A. Additional correction for energy transfer efficiency calculation in filter-based Förster resonance energy transfer microscopy for more accurate results. J. Biomed. Opt. 15, 020513 (2010).

    Article  ADS  Google Scholar 

  175. Blaine, J. et al. Dynamic imaging of the sodium phosphate cotransporters. Adv. Chronic Kidney Dis. 18, 145–150 (2011).

    Article  Google Scholar 

  176. Dobrinskikh, E. et al. Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells. Am. J. Physiol. Cell Physiol. 304, C561–C573 (2013).

    Article  Google Scholar 

  177. Hinde, E., Digman, M. A., Welch, C., Hahn, K. M. & Gratton, E. Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microsc. Res. Tech. 75, 271–281 (2012).

    Article  Google Scholar 

  178. Lou, J. et al. Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response. Proc. Natl Acad. Sci. USA 116, 7323–7332 (2019).

    Article  ADS  Google Scholar 

  179. Levitt, J. A. et al. Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM. Sci. Rep. 10, 5146 (2020).

    Article  ADS  Google Scholar 

  180. Pelicci, S., Diaspro, A. & Lanzanò, L. Chromatin nanoscale compaction in live cells visualized by acceptor-to-donor ratio corrected Förster resonance energy transfer between DNA dyes. J. Biophoton. 12, e201900164 (2019).

    Article  Google Scholar 

  181. Mehl, B. P. et al. Live-cell biosensors based on the fluorescence lifetime of environment-sensing dyes. Cell Rep. Methods 4, 100734 (2024).

    Article  Google Scholar 

  182. Liang, Z., Solano, A., Lou, J. & Hinde, E. Histone FRET reports the spatial heterogeneity in nanoscale chromatin architecture that is imparted by the epigenetic landscape at the level of single foci in an intact cell nucleus. Chromosoma 133, 5–14 (2024).

    Article  Google Scholar 

  183. Guaglianone, G. et al. Elucidating the oligomerization and cellular interactions of a trimer derived from aβ through fluorescence and mass spectrometric studies. ACS Chem. Neurosci. 13, 2473–2482 (2022).

    Article  Google Scholar 

  184. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  185. Gonzalez Pisfil, M. et al. Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime phasor separation. Sci. Rep. 12, 14027 (2022).

    Article  ADS  Google Scholar 

  186. Tortarolo, G. et al. Photon-separation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale 11, 1754–1761 (2019).

    Article  Google Scholar 

  187. Bovolenta, A., Cominelli, A., Acconcia, G. & Rech, I. Quantifying distortion in time-correlated single photon counting: a universal parameter. Opt. Lett. 49, 1563–1566 (2024).

    Article  ADS  Google Scholar 

  188. Isbaner, S. et al. Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging. Opt. Express 24, 9429–9445 (2016).

    Article  ADS  Google Scholar 

  189. Alvarez, L. A. J. Application note: SP8 FALCON: a novel concept in fluorescence lifetime imaging enabling video-rate confocal FLIM. Nat. Methods https://www.nature.com/articles/d42473-019-00261-x (2019).

  190. Patting, R. M. & Wahl, M. Method for compensating detector pulse pile-up effects in time-correlated single-photon counting applications. European patent application number 17182210.9 (2019).

  191. Becker, W., Bergmann, A. & Smietana, S. Fast-acquisition TCSPC FLIM with sub-25-ps IRF width. in Multiphoton Microscopy in the Biomedical Sciences XIX Vol. 10882, 1088206 (SPIE, 2019).

  192. Karpf, S. et al. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat. Commun. 11, 2062 (2020).

    Article  ADS  Google Scholar 

  193. Ahmed-Cox, A., Macmillan, A. M., Pandzic, E., Whan, R. M. & Kavallaris, M. Application of rapid fluorescence lifetime imaging microscopy (RapidFLIM) to examine dynamics of nanoparticle uptake in live cell. Cells 11, 642 (2022).

    Article  Google Scholar 

  194. Meyer, J. et al. Rapid fluorescence lifetime imaging reveals that TRPV4 channels promote dysregulation of neuronal Na+ in ischemia. J. Neurosci. 42, 552–566 (2022).

    Article  Google Scholar 

  195. Michalet, X. Continuous and discrete phasor analysis of binned or time-gated periodic decays. AIP Adv. 11, 035331 (2021).

    Article  ADS  Google Scholar 

  196. Ranjit, S., Malacrida, L. & Gratton, E. Differences between FLIM phasor analyses for data collected with the Becker and Hickl 830 BH card and with the FLIMbox card. Microsc. Res. Tech. 81, 980–989 (2018).

    Article  Google Scholar 

  197. Fazel, M. et al. Building fluorescence lifetime maps photon-by-photon by leveraging spatial correlations. ACS Photon. 10, 3558–3569 (2023).

    Article  Google Scholar 

  198. Poland, S. P. et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging. Biomed. Opt. Express 6, 277–296 (2015).

    Article  Google Scholar 

  199. Krstajić, N. et al. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays. Opt. Lett. 40, 4305–4308 (2015).

    Article  ADS  Google Scholar 

  200. Mai, H. et al. Development of a high-speed line-scanning fluorescence lifetime imaging microscope for biological imaging. Opt. Lett. 48, 2042–2045 (2023).

    Article  ADS  Google Scholar 

  201. Ghezzi, A. et al. Multispectral compressive fluorescence lifetime imaging microscopy with a SPAD array detector. Opt. Lett. 46, 1353–1356 (2021).

    Article  ADS  Google Scholar 

  202. Ulku, A. et al. Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods Appl. Fluoresc. 8, 024002 (2020).

    Article  ADS  Google Scholar 

  203. Nedbal, J. et al. A time-correlated single photon counting SPAD array camera with a bespoke data-processing algorithm for lightsheet fluorescence lifetime imaging (FLIM) and FLIM videos. Sci. Rep. 14, 7247 (2024).

    Article  ADS  Google Scholar 

  204. Thiele, J. C. et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano 14, 14190–14200 (2020).

    Article  Google Scholar 

  205. Oleksiievets, N. et al. Wide-field fluorescence lifetime imaging of single molecules. J. Phys. Chem. A 124, 3494–3500 (2020).

    Article  Google Scholar 

  206. Zaza, C. et al. Super-resolved FRET imaging by confocal fluorescence-lifetime single-molecule localization microscopy. Small Methods 7, 2201565 (2023).

    Article  Google Scholar 

  207. Zhu, X. et al. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles. Angew. Chem. Int. Ed. 60, 23545–23551 (2021).

    Article  ADS  Google Scholar 

  208. Li, B., Lin, J., Huang, P. & Chen, X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 6, 91–102 (2022).

    Article  Google Scholar 

  209. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  ADS  Google Scholar 

  210. Chen, Y., Xue, L., Zhu, Q., Feng, Y. & Wu, M. Recent advances in second near-infrared region (NIR-II) fluorophores and biomedical applications. Front. Chem. 9, 750404 (2021).

    Article  Google Scholar 

  211. Carlsson, K. & Liljeborg, A. Confocal fluorescence microscopy using spectral and lifetime information to simultaneously record four fluorophores with high channel separation. J. Microscopy 185, 37–46 (1997).

    Article  Google Scholar 

  212. Wahl, M. et al. Photon arrival time tagging with many channels, sub-nanosecond deadtime, very high throughput, and fiber optic remote synchronization. Rev. Sci. Instrum. 91, 013108 (2020).

    Article  ADS  Google Scholar 

  213. Niehörster, T. et al. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat. Methods 13, 257–262 (2016).

    Article  Google Scholar 

  214. Sun, Y. et al. Characterization of a time-resolved spectral detector for spectral fluorescence lifetime imaging with the parallel 16-channel FastFLIM and the phasor analysis. in Multiphoton Microscopy in the Biomedical Sciences XXIII Vol. 21 (eds Periasamy, A., So, P. T. & König, K.) (SPIE, 2023).

  215. Rohilla, S., Krämer, B., Koberling, F., Gregor, I. & Hocke, A. C. Multi-target immunofluorescence by separation of antibody cross-labelling via spectral-FLIM-FRET. Sci. Rep. 10, 3820 (2020).

    Article  ADS  Google Scholar 

  216. Williams, G. O. S. et al. Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution. Nat. Commun. 12, 6616 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Rossetta (FLIM Labs) for sharing valuable information and engaging in insightful discussions for this Primer. The authors also thank E. Sisamakis (PicoQuant), G. Ossato (Leica Microsystems), B. Barbieri and U. Coskun (ISS) for their helpful discussions on the topics covered in this Primer. L.M. and B.P. were supported by grants 2020-225439, 2021-240122 and 2022-252604 from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation. L.M. and B.P. were supported by Fondo para la Convergencia Estructural del Mercosur (COF 03/11).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.P., L.M., B.T. and M.A.D.); Experimentation (B.T. and M.A.D.); Results (B.P.); Applications (B.P. and B.T.); Reproducibility and data deposition (L.M. and M.D.); Limitations and optimizations (B.T.); Outlook (B.P. and B.T.); overview of the Primer (L.M., B.T. and M.A.D.).

Corresponding authors

Correspondence to Belen Torrado, Leonel Malacrida or Michelle A. Digman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Laura Marcu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BrightEyes-MCS: https://github.com/VicidominiLab/BrightEyes-MCS

FLIM STUDIO: https://www.flimlabs.com/flim-studio-software/

FLIMfit: https://github.com/flimfit/FLIMfit

flimview: https://github.com/Biophotonics-COMI/flimview

Fluorescence Lifetime Standards: https://iss.com/resources#fluorescence-lifetime-standards

FluorescenceLifetime: https://github.com/CreLox/FluorescenceLifetime

FLUTE: https://github.com/LaboratoryOpticsBiosciences/FLUTE

Leica Application Suite X (LAS X): https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/

LIFA: https://lambertinstruments.com/lifa-software

OpenFLIM: https://github.com/imperial-photonics/openFLIM-GOI

PAM: https://gitlab.com/PAM-PIE/PAM

PhasorPy: https://www.phasorpy.org/stable/index.html

SimFCS: https://www.lfd.uci.edu/globals/

SPCImage: https://www.becker-hickl.com/products/spcimage/

SymPhoTime 64: https://www.picoquant.com/products/category/software/symphotime-64-fluorescence-lifetime-imaging-and-correlation-software

VistaVision: https://iss.com/software/vistavision

Supplementary information

Glossary

Analog frequency domain

A technique in which fluorescence lifetime measurements are obtained by analysing the modulation of the fluorescence signal at a given frequency or different frequencies.

Digital frequency domain

(DFD). A technique used to define data collected with pulsed laser excitation followed by a conversion of the acquired signal into the frequency domain such as the phasor transformation or phasor approach.

Digital heterodyne principle

A method that combines two signals with slightly different frequencies to generate a new signal representing their difference.

Fluorescence lifetime

The average duration a fluorophore remains in its excited state before emitting a photon and returning to its ground state, typically measured in nanoseconds.

Phase

The timing of laser pulses, corresponding to the frequency at which the laser pulses occur.

Phase-modulation

Involves modulating the excitation light at frequencies in the range of several megahertz to tens or hundreds of megahertz to accurately capture fluorescence lifetimes in the nanosecond range and analysing the phase shift between the excitation and emission signals to determine the fluorescence lifetime of the sample.

Phasor approach

A mathematical method used in fluorescence lifetime imaging microscopy for data analysis and visualization represents the fluorescence lifetimes as points on a Cartesian coordinate system. This complex plane is a 2D graph in which the horizontal axis represents a real part of a complex number and the vertical axis represents the imaginary part.

Phasor transformation

Involves the conversion of fluorescence decay data from the time domain at each pixel to the frequency domain using Fourier transformation.

Reciprocity principle

A technique used in the phasor approach that facilitates the identification of pixels within designated regions of interest on the phasor plot by selecting a region of interest in the image. This enables the determination of the distribution of their corresponding phasor points.

Time-correlated single-photon counting

(TCSPC). A method that operates by identifying single photons within a periodic light or laser signal, registering the precise times of photon arrival and subsequently reconstructing the waveform using these recorded data.

Time-domain

A method in which the fluorescence lifetime of fluorophores is determined by analysing the temporal delay between the excitation pulse and the emitted fluorescence signal.

Time-tagging

A method to record the arrival times of individual photons emitted by fluorophores. This technique involves assigning a time stamp to each detected photon relative to the excitation pulse.

Window

The frequency generated by the digital heterodyne principle, which is used to create a low-frequency replica of the fluorescence decay.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrado, B., Pannunzio, B., Malacrida, L. et al. Fluorescence lifetime imaging microscopy. Nat Rev Methods Primers 4, 80 (2024). https://doi.org/10.1038/s43586-024-00358-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-024-00358-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing