Table 2 Forecast evaluation for Germany and Poland (incidence scale, based on RKI/MZ data).

From: National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021

Germany

 

1 wk ahead cases

2 wk ahead cases

1 wk ahead deaths

2 wk ahead deaths

Model

AE

WIS

C0.5

C0.95

AE

WIS

C0.5

C0.95

AE

WIS

C0.5

C0.95

AE

WIS

C0.5

C0.95

epiforecasts-EpiExpert

9252

5415

0.25

1.00

20,233

13,607

0.42

0.50

300

204

0.50

0.92

509

323

0.33

0.92

epiforecasts-EpiNow2

9676

6644

0.67

0.83

29,348

21,478

0.58

0.67

300

188

0.75

0.92

581

417

0.67

0.75

FIAS_FZJ-Epi1Ger

10,218

6294

0.33

0.92

25,662

16,621

0.08

0.58

436

336

0.17

0.25

655

475

0.17

0.58

IHME-CurveFit

        

516

   

656

   

Imperial-ensemble2

        

*193

*136

0.80

0.90

    

itwm-dSEIR

6905

4644

0.42

0.75

18,935

13,626

0.42

0.75

483

326

0.58

0.83

534

354

0.50

0.83

ITWW-county_repro

15,223

12,418

0.08

0.25

31,836

25,851

0.00

0.17

564

527

0.00

0.00

286

236

0.08

0.25

Karlen-pypm

18,532

13,629

0.50

0.92

35,010

25,385

0.25

0.83

380

232

0.42

0.92

628

394

0.08

0.83

LANL-GrowthRate

12,623

10,542

0.75

1.00

15,797

13,945

0.75

1.00

338

222

0.50

1.00

425

265

0.58

1.00

LeipzigIMISE-SECIR

9161

6376

0.17

0.67

26,650

19,185

0.17

0.58

370

281

0.58

1.00

874

636

0.33

0.75

MIT_CovidAnalytics-DELPHI

*11,910

* 8277

0.55

0.91

*22,734

*16,006

0.36

0.73

803

490

0.42

0.92

773

451

0.58

1.00

SDSC_ISG-TrendModel

7861

       

436

       

USC-SIkJalpha

13,766

9001

0.25

0.83

25,730

17,681

0.17

0.58

381

255

0.50

0.83

568

348

0.25

0.83

KIT-baseline

12,756

7953

0.42

0.92

23,785

17,330

0.17

0.58

411

277

0.58

0.92

780

525

0.17

0.67

KIT-extrapolation_baseline

8823

5715

0.50

1.00

22,858

14,679

0.33

0.75

456

269

0.33

1.00

806

490

0.33

0.83

KIT-time_series_baseline

15,583

10,281

0.25

0.75

32,306

22,026

0.25

0.67

406

263

0.67

1.00

851

601

0.50

0.92

KITCOVIDhub-inverse_wis_ensemble

8586

5294

0.58

1.00

22,000

13,824

0.50

0.83

216

149

0.75

1.00

307

207

0.75

1.00

KITCOVIDhub-mean_ensemble

8377

5277

0.75

1.00

21,825

13,662

0.50

0.92

220

152

0.58

1.00

346

219

0.75

1.00

KITCOVIDhub-median_ensemble

7344

4660

0.67

1.00

19,296

12,734

0.42

0.83

232

150

0.75

1.00

376

225

0.58

1.00

Poland

 

1 wk ahead cases

2 wk ahead cases

1 wk ahead deaths

2 wk ahead deaths

Model

AE

WIS

C0.5

C0.95

AE

WIS

C0.5

C0.95

AE

WIS

C0.5

C0.95

AE

WIS

C0.5

C0.95

epiforecasts-EpiExpert

7500

4553

0.50

0.92

25,316

17,408

0.17

0.67

208

137

0.33

0.92

287

181

0.50

0.83

epiforecasts-EpiNow2

7928

5906

0.58

0.92

29,762

22,098

0.42

0.83

184

119

0.58

1.00

340

228

0.58

1.00

ICM-agentModel

*23,011

*15,824

0.27

0.91

*26,694

*18,098

0.73

1.00

*488

*294

0.73

1.00

*605

*507

0.82

1.00

IHME-CurveFit

        

374

   

520

   

Imperial-ensemble2

        

*188

*138

0.30

0.70

    

ITWW-county_repro

20,054

17,364

0.17

0.25

36,651

31,445

0.17

0.50

589

551

0.00

0.00

784

711

0.00

0.00

LANL-GrowthRate

8129

5787

0.83

1.00

23,269

15,240

0.58

0.92

229

137

0.17

0.83

347

216

0.33

0.92

MIMUW-StochSEIR

5705

4028

0.33

0.83

17,642

15,347

0.17

0.33

237

224

0.17

0.17

288

267

0.00

0.00

MIT_CovidAnalytics-DELPHI

*22,344

*12,912

0.20

0.90

*49,687

*33,033

0.10

0.70

*393

*244

0.55

1.00

*520

*296

0.36

1.00

MOCOS-agent1

5173

4978

0.42

0.67

15,022

11,380

0.25

0.67

158

132

0.75

1.00

203

149

0.83

1.00

SDSC_ISG-TrendModel

6323

       

265

       

USC-SIkJalpha

10,404

6919

0.33

0.83

32,822

24,436

0.17

0.50

206

133

0.33

0.92

266

168

0.42

0.92

KIT-baseline

16,407

9736

0.42

0.83

32,182

22,709

0.08

0.42

258

167

0.42

0.92

416

275

0.17

0.67

KIT-extrapolation_baseline

9448

5992

0.50

0.92

29,638

22,165

0.25

0.58

269

190

0.58

0.83

404

284

0.42

0.83

KIT-time_series_baseline

10,784

7787

0.75

0.83

30,359

21,510

0.50

0.75

300

232

0.67

0.67

467

362

0.50

0.58

KITCOVIDhub-inverse_wis_ensemble

7319

4689

0.50

1.00

23,418

15,580

0.42

0.83

150

111

0.75

1.00

197

144

0.75

1.00

KITCOVIDhub-mean_ensemble

6866

4784

0.75

1.00

23,673

15,573

0.33

0.83

141

114

0.75

1.00

173

152

0.92

1.00

KITCOVIDhub-median_ensemble

7130

4403

0.58

1.00

23,027

16,241

0.33

0.83

162

103

0.67

1.00

193

137

0.75

1.00

  1. Summaries are based on 12 weekly forecasts per target.
  2. Abbreviations: C0.5, C0.95: coverage rates of the 50 and 95% prediction intervals, AE: mean absolute error, WIS: mean weighted interval score.
  3. *Asterisks mark entries where scores were imputed for at least one week. Weighted interval scores and absolute errors were imputed with the worst (largest) score achieved by any other forecast for the respective target and week. Models marked thus received a pessimistic assessment of their performance. If a model covered less than two-thirds of the evaluation period, results are omitted.