Table 3 Predictive performance of the individual dementia type-specific models.

From: Machine learning models identify predictive features of patient mortality across dementia types

Dementia type (sample size [n] in internal test set/external test set)

Internal test set

External test set

Accuracy (95% CI)

AUC-ROC (95% CI)

AUC-PR (95% CI)

Accuracy

AUC-ROC

AUC-PR

No dementia (n = 8427/11800)

0.834 (0.827–0.844)

0.873 (0.859–0.879)

0.513 (0.475–0.546)

0.696

0.842

0.336

Alzheimer’s disease (n = 7598/7351)

0.774 (0.766–0.783)

0.854 (0.845–0.863)

0.790 (0.769–0.805)

0.683

0.827

0.695

Missing/unknown (n = 1264/191)

0.808 (0.773–0.834)

0.862 (0.813–0.889)

0.504 (0.477–0.629)

0.838

0.794

0.263

Frontotemporal lobar degeneration (n = 858/1058)

0.714 (0.683–0.745)

0.796 (0.760–0.821)

0.810 (0.735–0.819)

0.695

0.772

0.677

Lewy body dementia (n = 637/561)

0.719 (0.696–0.769)

0.796 (0.780–0.842)

0.806 (0.771–0.846)

0.717

0.807

0.763

Vascular brain injury or vascular dementia (n = 458/507)

0.751 (0.727–0.803)

0.839 (0.796–0.871)

0.752 (0.681–0.815)

0.712

0.797

0.640

Cognitive impairment for other specified reasons (n = 273/495)

0.780 (0.744–0.828)

0.832 (0.795–0.900)

0.665 (0.469–0.731)

0.786

0.833

0.421

Depression (n = 271/235)

0.815 (0.790–0.889)

0.800 (0.732–0.895)

0.408 (0.228–0.606)

0.813

0.785

0.421