Table 2 Prediction of the performance of different nodes and techniques used for benchmarking breast cancer tumor prediction on the external validation UKA cohort
Technique | Local training (AUROC) | Swarm (AUROC) | Centralized Model (AUROC) | ||
|---|---|---|---|---|---|
Node1 (40%) | Node2 (20%) | Node3 (10%) | |||
3D-ResNet18 | 0.606 [±0.073] | 0.642 [±0.036] | 0.534 [±0.038] | 0.668 [±0.016] | 0.606 [±0.055] |
3D-ResNet50 | 0.610 [±0.089] | 0.708 [±0.033] | 0.580 [±0.082] | 0.750 [±0.019] | 0.694 [±0.038] |
3D-ResNet101 | 0.626 [±0.070] | 0.664 [±0.171] | 0.548 [±0.057] | 0.774 [±0.021] | 0.742 [±0.026] |
3D-DenseNet121 | 0.622 [±0.028] | 0.556 [±0.036] | 0.614 [±0.040] | 0.656 [±0.038] | 0.634 [±0.042] |
ViT-MIL | 0.604 [±0.038] | 0.624 [±0.030] | 0.546 [±0.038] | 0.660 [±0.041] | 0.630 [±0.037] |
ViT-LSTM-MIL | 0.608 [±0.022] | 0.610 [±0.047] | 0.532 [±0.036] | 0.658 [±0.035] | 0.688 [±0.016] |
Att-MIL | 0.568 [±0.035] | 0.540 [±0.020] | 0.482 [±0.037] | 0.604 [±0.011] | 0.558 [±0.039] |
2D-ResNet50 | 0.554 [±0.036] | 0.576 [±0.032] | 0.538 [±0.035] | 0.578 [±0.049] | 0.574 [±0.042] |