Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Medicine
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications medicine
  3. review articles
  4. article
Plasmodium malariae is an overlooked malaria parasite with emerging challenges
Download PDF
Download PDF
  • Review Article
  • Open access
  • Published: 09 January 2026

Plasmodium malariae is an overlooked malaria parasite with emerging challenges

  • Hari Shankar  ORCID: orcid.org/0000-0002-1736-368X1,2 na1,
  • Gaurav Kumar3 na1,
  • Naseem Ahmed3 &
  • …
  • Anat Florentin  ORCID: orcid.org/0000-0002-9071-00781 

Communications Medicine , Article number:  (2026) Cite this article

  • 1542 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Malaria
  • Parasite host response

Abstract

Plasmodium malariae (P.m.) represents the least studied of the five human-malaria-causing Plasmodium species, despite its widespread global distribution. Control of P.m. is challenging due to the parasite’s unique biological features, unavailability of P.m.-specific diagnostic methods, chronic low-grade parasitemia, and suboptimal clinical features. Emerging evidence suggests increasing antimalarial drug resistance and reduced susceptibility to first-line antimalarials. Its capacity for chronic infection, diagnostic challenges, and emerging drug resistance threaten malaria elimination efforts. Thus, it represents a significant yet underappreciated contributor to global malaria burden. Enhanced molecular diagnostics, targeted therapeutic strategies, and improved surveillance systems are urgently needed to address this neglected pathogen and prevent its resurgence when other malaria species are under control. Here, we synthesize current knowledge on P.m. biology, public health impact, immune paradigm, and clinical manifestations. We discuss the research gaps, outstanding questions, and novel approaches to study P.m. biology.

Similar content being viewed by others

Plasmodium malariae structure and genetic diversity in sub-Saharan Africa determined from microsatellite variants and linked SNPs in orthologues of antimalarial resistance genes

Article Open access 19 December 2022

Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission

Article Open access 29 November 2021

Ancient Plasmodium genomes shed light on the history of human malaria

Article Open access 12 June 2024

References

  1. Arrow, K. J., Panosian, C. & Gelband, H. Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance (National Academies Press, 2004).

  2. Bruce-Chuvatt, L. J. Alphonse Laveran’s discovery 100 years ago and today’s global fight against malaria. J. R. Soc. Med. 74, 531–536 (1981).

    Google Scholar 

  3. McFadden, G. I. Plasmodia - don’t. Trends Parasitol. 28, 306 (2012).

    Google Scholar 

  4. Celli, A. & Marchiafava, E. Nuove Ricerche Sulla Infezione Malarica/del Prof. Ettore Marchiafava e del Dr. Angelo Celli (Tipografia Eredi Botta, 1885).

  5. Collins, W. E. & Jeffery, G. M. Plasmodium malariae: parasite and disease. Clin. Microbiol. Rev. 20, 579–592 (2007).

    Google Scholar 

  6. Zhang, L., Yi, B.-Y., Zhou, S.-S., Xia, Z.-G. & Yin, J.-H. Epidemiological characteristics of Plasmodium malariae malaria in China: a malaria that should not be neglected post elimination. Infect. Dis. Poverty 12, 101 (2023).

    Google Scholar 

  7. Bruce, M. C., Macheso, A., Galinski, M. R. & Barnwell, J. W. Characterization and application of multiple genetic markers for Plasmodium malariae. Parasitology 134, 637–650 (2007).

    Google Scholar 

  8. Khanh, C. V. et al. Unprecedented large outbreak of Plasmodium malariae malaria in Vietnam: epidemiological and clinical perspectives. Emerg. Microbes Infect. 14, 2432359 (2025).

    Google Scholar 

  9. Camargo-Ayala, P. A. et al. High Plasmodium malariae prevalence in an endemic area of the Colombian Amazon region. PLoS ONE 11, e0159968 (2016).

    Google Scholar 

  10. Li, P. et al. Plasmodium malariae and Plasmodium ovale infections in the China–Myanmar border area. Malar. J. 15, 557 (2016).

    Google Scholar 

  11. Zhou, X. et al. A molecular survey of febrile cases in malaria-endemic areas along China-Myanmar border in Yunnan province, People’s Republic of China. Parasite 21, 27 (2014).

    Google Scholar 

  12. Steenkeste, N. et al. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination. Malar. J. 9, 108 (2010).

    Google Scholar 

  13. Maguire, J. D. et al. Chloroquine-resistant Plasmodium malariae in South Sumatra, Indonesia. Lancet 360, 58–60 (2002).

    Google Scholar 

  14. Nainggolan, I. R. A. et al. The presence of Plasmodium malariae and Plasmodium knowlesi in near malaria elimination setting in western Indonesia. Malar. J. 21, 316 (2022).

    Google Scholar 

  15. Bal, M. et al. Neglected malaria parasites in hard-to-reach areas of Odisha, India: implications in elimination programme. Malar. J. 20, 482 (2021).

    Google Scholar 

  16. Pati, P., Rana, R. K., Khuntia, H. K., Bal, M. S. & Ranjit, M. R. The prevalence of P. malariae in Odisha, India. Trop. Biomed. 34, 607–614 (2017).

    Google Scholar 

  17. Singh, K., Bharti, P. K., Devi, N. C., Ahmed, N. & Sharma, A. Plasmodium malariae detected by microscopy in the International Bordering Area of Mizoram, a northeastern state of India. Diagnostics 12, 2015 (2022).

    Google Scholar 

  18. Gnémé, A. et al. Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso. Malar. J. 12, 67 (2013).

    Google Scholar 

  19. Sendor, R. et al. Epidemiology of Plasmodium malariae and Plasmodium ovale spp. in Kinshasa Province, Democratic Republic of Congo. Nat. Commun. 14, 6618 (2023).

    Google Scholar 

  20. Yman, V. et al. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in eastern Tanzania. PLoS Negl. Trop. Dis. 13, e0007414 (2019).

    Google Scholar 

  21. Antinori, S., Galimberti, L., Milazzo, L. & Corbellino, M. Biology of human malaria Plasmodia including Plasmodium Knowlesi. Mediterr. J. Hematol. Infect. Dis. 4, e2012013 (2012).

    Google Scholar 

  22. Mueller, I., Zimmerman, P. A. & Reeder, J. C. Plasmodium malariae and Plasmodium ovale-the ‘bashful’ malaria parasites. Trends Parasitol. 23, 278–283 (2007).

    Google Scholar 

  23. Culleton, R., Pain, A. & Snounou, G. Plasmodium malariae: the persisting mysteries of a persistent parasite. Trends Parasitol. 39, 113–125 (2023).

    Google Scholar 

  24. Garnham, P. C. C. Malaria Parasites and Other Haemosporidia (Blackwell Scientific Publications Ltd., 1967).

  25. Coatney, G. R. (eds. George R., Collins, W. E., Warren, M. & Contacos, P. G.) The Primate Malarias (CDC, 1971).

  26. Markus, M. B. Do hypnozoites cause relapse in malaria? Trends Parasitol. 31, 239–245 (2015).

    Google Scholar 

  27. Grande, R., Antinori, S., Meroni, L., Menegon, M. & Severini, C. A case of Plasmodium malariae recurrence: recrudescence or reinfection? Malar. J. 18, 169 (2019).

    Google Scholar 

  28. Marteau, A. et al. Severe long-delayed malaria caused by Plasmodium malariae in an elderly French patient. Malar. J. 20, 337 (2021).

    Google Scholar 

  29. Tournoy, T. K., Rosanas-Urgell, A., Van Esbroeck, M., Bottieau, E. & Huits, R. Plasmodium malariae after successful treatment of P. falciparum malaria with artemether-lumefantrine. Int. J. Infect. Dis. 119, 56–58 (2022).

    Google Scholar 

  30. Rutledge, G. G. et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature 542, 101–104 (2017).

    Google Scholar 

  31. Gimenez, A. M., Marques, R. F., Regiart, M. & Bargieri, D. Y. Diagnostic methods for non-Falciparum malaria. Front. Cell Infect. Microbiol. 11, 681063 (2021).

    Google Scholar 

  32. Bruce, M. C., Macheso, A., McConnachie, A. & Molyneux, M. E. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi. Malar. J. 10, 38 (2011).

    Google Scholar 

  33. Oriero, E. C., Amenga-Etego, L., Ishengoma, D. S. & Amambua-Ngwa, A. Plasmodium malariae, current knowledge and future research opportunities on a neglected malaria parasite species. Crit. Rev. Microbiol. 47, 44–56 (2021).

    Google Scholar 

  34. Rutledge, G. G. et al. Genomic Characterization of Recrudescent Plasmodium malariae after treatment with artemether/lumefantrine. Emerg. Infect. Dis. 23, 1300–1307 (2017).

    Google Scholar 

  35. Fuehrer, H.-P., Campino, S. & Sutherland, C. J. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar. J. 21, 138 (2022).

    Google Scholar 

  36. Kumar, G. & Shankar, H. Unravelling the situation of malaria misdiagnosis in India: its adverse impact and management strategies. Asian Pac. J. Trop. Med. 15, 290 (2022).

    Google Scholar 

  37. Yerlikaya, S., Campillo, A. & Gonzalez, I. J. A systematic review: performance of rapid diagnostic tests for the detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale monoinfections in human blood. J. Infect. Dis. 218, 265–276 (2018).

    Google Scholar 

  38. Abba, K. et al. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. Cochrane Database Syst. Rev. 2014, CD011431 (2014).

    Google Scholar 

  39. Lo, E. et al. Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerg. Infect. Dis. 23, 601–610 (2017).

    Google Scholar 

  40. Roman, D. N. R. et al. Asymptomatic Plasmodium malariae infections in children from suburban areas of Yaoundé, Cameroon. Parasitol. Int. 67, 29–33 (2018).

    Google Scholar 

  41. Nguiffo-Nguete, D. et al. Plasmodium malariae contributes to high levels of malaria transmission in a forest-savannah transition area in Cameroon. Parasit. Vectors 16, 31 (2023).

    Google Scholar 

  42. Bousema, J. T. et al. Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am. J. Trop. Med. Hyg. 78, 442–448 (2008).

    Google Scholar 

  43. Holzschuh, A. et al. Co-infection of the four major Plasmodium species: effects on densities and gametocyte carriage. PLoS Negl. Trop. Dis. 16, e0010760 (2022).

    Google Scholar 

  44. Kho, S. et al. Diagnostic performance of a 5-plex malaria immunoassay in regions co-endemic for Plasmodium falciparum, P. vivax, P. knowlesi, P. malariae and P. ovale. Sci. Rep. 12, 7286 (2022).

    Google Scholar 

  45. Royero-Bermeo, W. Y., Sánchez-Jiménez, M. M. & Ospina-Villa, J. D. Aptamers as innovative tools for malaria diagnosis and treatment: advances and future perspectives. Biol. Methods Protoc. 10, bpaf025 (2025).

    Google Scholar 

  46. Alam, M. S. et al. Aptamer-based diagnosis for Plasmodium vivax specific malaria. ACS Infect. Dis. 11, 762–772 (2025).

    Google Scholar 

  47. Brosseau, N. E., Vallée, I., Mayer-Scholl, A., Ndao, M. & Karadjian, G. Aptamer-based technologies for parasite detection. Sensors 23, 562 (2023).

    Google Scholar 

  48. Oviedo, A. et al. Spatial cluster analysis of Plasmodium vivax and P. malariae exposure using serological data among Haitian school children sampled between 2014 and 2016. PLoS Negl. Trop. Dis. 16, e0010049 (2022).

    Google Scholar 

  49. Cunningham, C. H. et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine 68, 103415 (2021).

    Google Scholar 

  50. Lee, R. A. et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl. Acad. Sci. USA 117, 25722–25731 (2020).

    Google Scholar 

  51. Elizardez, Y. B. et al. Recombinant proteins of Plasmodium malariae merozoite surface protein 1 (PmMSP1): testing immunogenicity in the BALB/c model and potential use as diagnostic tool. PLoS ONE 14, e0219629 (2019).

    Google Scholar 

  52. Li, M. et al. Immunogenic and diagnostic potential of recombinant apical membrane antigen-1 from Plasmodium malariae. Diagn. Microbiol. Infect. Dis. 110, 116480 (2024).

    Google Scholar 

  53. Ansah, F. et al. Development of cooperative primer-based real-time PCR assays for the detection of Plasmodium malariae and Plasmodium ovale. J. Mol. Diagn. 23, 1393–1403 (2021).

    Google Scholar 

  54. Assefa, A. et al. Detection of P. malariae using a new rapid isothermal amplification lateral flow assay. Malar. J. 23, 104 (2024).

    Google Scholar 

  55. Lin, H. et al. Rapid visual detection of Plasmodium using recombinase-aided amplification with lateral flow dipstick assay. Front. Cell. Infect. Microbiol. 12, 922146 (2022).

  56. Siriyod, N. et al. Microfluidic paper-based analytical device for point-of-care nucleic acid quantification of malaria. Microchem. J. 212, 113139 (2025).

    Google Scholar 

  57. Sazed, S. A., Kibria, M. G. & Alam, M. S. An optimized real-time qPCR method for the effective detection of human malaria infections. Diagnostics 11, 736 (2021).

    Google Scholar 

  58. Tsagkaris, C. et al. WHEN QUARTAN FEVER RELIEVED DEPRESSION: THE INCEPTION OF PYRETOTHERAPY IN THE GRECO-ROMAN ANTIQUITY. Wiad. Lek. 75, 1900–1902 (2022).

    Google Scholar 

  59. Kotepui, M., Kotepui, K. U., Milanez, G. D. & Masangkay, F. R. Global prevalence and mortality of severe Plasmodium malariae infection: a systematic review and meta-analysis. Malar. J. 19, 274 (2020).

    Google Scholar 

  60. Langford, S. et al. Plasmodium malariae infection associated with a high burden of anemia: a hospital-based surveillance study. PLoS Negl. Trop. Dis. 9, e0004195 (2015).

    Google Scholar 

  61. Douglas, N. M. et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 10, e1001575 (2013).

    Google Scholar 

  62. Silva, G. B. da, Pinto, J. R., Barros, E. J. G., Farias, G. M. N. & Daher, E. D. F. Kidney involvement in malaria: an update. Rev. Inst. Med. Trop. Sao Paulo 59, e53 (2017).

    Google Scholar 

  63. Gentile, F. et al. From Uganda to Italy: a case of nephrotic syndrome secondary to Plasmodium infection, Quartan malarial nephropathy and kidney failure. Turk. J. Pediatr. 61, 776–779 (2019).

    Google Scholar 

  64. Gilles, H. M. & Hendrickse, R. G. Nephrosis in Nigerian children. Role of Plasmodium malariae, and effect of antimalarial treatment. Br. Med. J. 2, 27–31 (1963).

    Google Scholar 

  65. Badiane, A. S. et al. Acute kidney injury associated with Plasmodium malariae infection. Malar. J. 13, 226 (2014).

    Google Scholar 

  66. Possemiers, H. et al. Experimental malaria-associated acute kidney injury is independent of parasite sequestration and resolves upon antimalarial treatment. Front. Cell. Infect. Microbiol. 12, 915792 (2022).

  67. Katsoulis, O., Georgiadou, A. & Cunnington, A. J. Immunopathology of acute kidney injury in severe malaria. Front. Immunol. 12, 651739 (2021).

  68. Goretzki, S. et al. Congenital infection with Plasmodium malariae: a rare case of intrauterine transmission in Germany. Malar. J. 24, 91 (2025).

    Google Scholar 

  69. Popkin-Hall, Z. R. et al. Prevalence of non-falciparum malaria infections among asymptomatic individuals in four regions of Mainland Tanzania. Parasit. Vectors 17, 153 (2024).

    Google Scholar 

  70. Popkin-Hall, Z. R. et al. Population genomics of Plasmodium malariae from four African countries. Preprint at medRxiv https://doi.org/10.1101/2024.09.07.24313132 (2024).

  71. Choisy, M. & de Roode, J. C. Mixed infections and the evolution of virulence: effects of resource competition, parasite plasticity, and impaired host immunity. Am. Nat. 175, E105–E118 (2010).

    Google Scholar 

  72. Dao, F. et al. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl. Trop. Dis. 19, e0012790 (2025).

    Google Scholar 

  73. WHO Guidelines for Malaria, 16 October 2023. https://iris.who.int/bitstream/handle/10665/373339/WHO-UCN-GMP-2023.01-Rev.1-eng.pdf (2023).

  74. Groger, M. et al. Effectiveness of pyronaridine-artesunate against Plasmodium malariae, Plasmodium ovale spp, and mixed-Plasmodium infections: a post-hoc analysis of the CANTAM-Pyramax trial. Lancet Microbe 3, e598–e605 (2022).

    Google Scholar 

  75. Dembele, L. et al. Plasmodium malariae and Plasmodium falciparum comparative susceptibility to antimalarial drugs in Mali. J. Antimicrob. Chemother. 76, 2079–2087 (2021).

    Google Scholar 

  76. Woodford, J. et al. An experimental human blood-stage model for studying Plasmodium malariae infection. J. Infect. Dis. 221, 948–955 (2020).

    Google Scholar 

  77. Maitland, K. et al. The interaction between Plasmodium falciparum and P. vivax in children on Espiritu Santo Island, Vanuatu. Trans. R. Soc. Trop. Med. Hyg. 90, 614–620 (1996).

    Google Scholar 

  78. Low, L. M. et al. Controlled infection immunization using delayed death drug treatment elicits protective immune responses to blood-stage malaria parasites. Infect. Immun. 87, e00587-18 (2019).

    Google Scholar 

  79. Rénia, L. & Goh, Y. S. Malaria parasites: the great escape. Front. Immunol. 7, 463 (2016).

    Google Scholar 

  80. Zimmerman, P. A., Mehlotra, R. K., Kasehagen, L. J. & Kazura, J. W. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol. 20, 440–447 (2004).

    Google Scholar 

  81. Collins, W. E. & Jeffery, G. M. A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium Falciparum in patients previously infected with heterologous species of Plasmodium: effect on development of parasitologic and clinical immunity. Am. J. Trop. Med. Hyg. 61, 36–43 (1999).

    Google Scholar 

  82. Wykes, M. N. et al. Rodent blood-stage Plasmodium survive in dendritic cells that infect naive mice. Proc. Natl. Acad. Sci. USA 108, 11205–11210 (2011).

    Google Scholar 

  83. Tsuchida, H., Yamaguchi, K., Yamamoto, S. & Ebisawa, I. Quartan malaria following splenectomy 36 years after infection. Am. J. Trop. Med. Hyg. 31, 163–165 (1982).

    Google Scholar 

  84. Monteiro, E. F. et al. Antibody profile comparison against MSP1 antigens of multiple Plasmodium species in human serum samples from two different Brazilian populations using a multiplex serological assay. Pathogens 10, 1138 (2021).

    Google Scholar 

  85. Schmid-Hempel, P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 85–98 (2009).

    Google Scholar 

  86. May, R. M. & Nowak, M. A. Coinfection and the evolution of parasite virulence. Proc. R. Soc. Lond. Ser. B Biol. Sci. 261, 209–215 (1997).

    Google Scholar 

  87. Bruce, M. C. & Day, K. P. Cross-species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. Trends Parasitol. 19, 271–277 (2003).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation (ISF) under the Joint Canada-Israel Health Research Program, Grant No. 3000/22 to A.F. A.F. is supported by The Abisch-Frenkel Faculty Development Lectureship.

Author information

Author notes
  1. These authors contributed equally: Hari Shankar, Gaurav Kumar.

Authors and Affiliations

  1. The Kuvin Center for the Study of Infectious and Tropical Diseases and Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel

    Hari Shankar & Anat Florentin

  2. Indian Council of Medical Research, New Delhi, India

    Hari Shankar

  3. ICMR-National Institute of Malaria Research, New Delhi, India

    Gaurav Kumar & Naseem Ahmed

Authors
  1. Hari Shankar
    View author publications

    Search author on:PubMed Google Scholar

  2. Gaurav Kumar
    View author publications

    Search author on:PubMed Google Scholar

  3. Naseem Ahmed
    View author publications

    Search author on:PubMed Google Scholar

  4. Anat Florentin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.S., G.K., N.A., and A.F. together wrote the manuscript. H.S. and A.F. conceived the idea, G.K. with H.S. wrote the first draft, N.A. is a WHO Level 1 certified microscopist provided the Giemsa-stained P.m. light microscopy image and its identifying features. AF created the images and edited the manuscript. All authors read and approved the final submitted version.

Corresponding author

Correspondence to Anat Florentin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Medicine thanks Daniel Nguiffo-Nguete and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review File

Description of Additional Supplementary Files

Supplementary Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, H., Kumar, G., Ahmed, N. et al. Plasmodium malariae is an overlooked malaria parasite with emerging challenges. Commun Med (2026). https://doi.org/10.1038/s43856-025-01360-1

Download citation

  • Received: 21 May 2025

  • Accepted: 22 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s43856-025-01360-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Health in Africa

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Contact
  • Conferences
  • Editorial Values Statement
  • Posters
  • Editorial policies

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Medicine (Commun Med)

ISSN 2730-664X (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing