Abstract
Plasmodium malariae (P.m.) represents the least studied of the five human-malaria-causing Plasmodium species, despite its widespread global distribution. Control of P.m. is challenging due to the parasite’s unique biological features, unavailability of P.m.-specific diagnostic methods, chronic low-grade parasitemia, and suboptimal clinical features. Emerging evidence suggests increasing antimalarial drug resistance and reduced susceptibility to first-line antimalarials. Its capacity for chronic infection, diagnostic challenges, and emerging drug resistance threaten malaria elimination efforts. Thus, it represents a significant yet underappreciated contributor to global malaria burden. Enhanced molecular diagnostics, targeted therapeutic strategies, and improved surveillance systems are urgently needed to address this neglected pathogen and prevent its resurgence when other malaria species are under control. Here, we synthesize current knowledge on P.m. biology, public health impact, immune paradigm, and clinical manifestations. We discuss the research gaps, outstanding questions, and novel approaches to study P.m. biology.

Similar content being viewed by others
References
Arrow, K. J., Panosian, C. & Gelband, H. Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance (National Academies Press, 2004).
Bruce-Chuvatt, L. J. Alphonse Laveran’s discovery 100 years ago and today’s global fight against malaria. J. R. Soc. Med. 74, 531–536 (1981).
McFadden, G. I. Plasmodia - don’t. Trends Parasitol. 28, 306 (2012).
Celli, A. & Marchiafava, E. Nuove Ricerche Sulla Infezione Malarica/del Prof. Ettore Marchiafava e del Dr. Angelo Celli (Tipografia Eredi Botta, 1885).
Collins, W. E. & Jeffery, G. M. Plasmodium malariae: parasite and disease. Clin. Microbiol. Rev. 20, 579–592 (2007).
Zhang, L., Yi, B.-Y., Zhou, S.-S., Xia, Z.-G. & Yin, J.-H. Epidemiological characteristics of Plasmodium malariae malaria in China: a malaria that should not be neglected post elimination. Infect. Dis. Poverty 12, 101 (2023).
Bruce, M. C., Macheso, A., Galinski, M. R. & Barnwell, J. W. Characterization and application of multiple genetic markers for Plasmodium malariae. Parasitology 134, 637–650 (2007).
Khanh, C. V. et al. Unprecedented large outbreak of Plasmodium malariae malaria in Vietnam: epidemiological and clinical perspectives. Emerg. Microbes Infect. 14, 2432359 (2025).
Camargo-Ayala, P. A. et al. High Plasmodium malariae prevalence in an endemic area of the Colombian Amazon region. PLoS ONE 11, e0159968 (2016).
Li, P. et al. Plasmodium malariae and Plasmodium ovale infections in the China–Myanmar border area. Malar. J. 15, 557 (2016).
Zhou, X. et al. A molecular survey of febrile cases in malaria-endemic areas along China-Myanmar border in Yunnan province, People’s Republic of China. Parasite 21, 27 (2014).
Steenkeste, N. et al. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination. Malar. J. 9, 108 (2010).
Maguire, J. D. et al. Chloroquine-resistant Plasmodium malariae in South Sumatra, Indonesia. Lancet 360, 58–60 (2002).
Nainggolan, I. R. A. et al. The presence of Plasmodium malariae and Plasmodium knowlesi in near malaria elimination setting in western Indonesia. Malar. J. 21, 316 (2022).
Bal, M. et al. Neglected malaria parasites in hard-to-reach areas of Odisha, India: implications in elimination programme. Malar. J. 20, 482 (2021).
Pati, P., Rana, R. K., Khuntia, H. K., Bal, M. S. & Ranjit, M. R. The prevalence of P. malariae in Odisha, India. Trop. Biomed. 34, 607–614 (2017).
Singh, K., Bharti, P. K., Devi, N. C., Ahmed, N. & Sharma, A. Plasmodium malariae detected by microscopy in the International Bordering Area of Mizoram, a northeastern state of India. Diagnostics 12, 2015 (2022).
Gnémé, A. et al. Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso. Malar. J. 12, 67 (2013).
Sendor, R. et al. Epidemiology of Plasmodium malariae and Plasmodium ovale spp. in Kinshasa Province, Democratic Republic of Congo. Nat. Commun. 14, 6618 (2023).
Yman, V. et al. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in eastern Tanzania. PLoS Negl. Trop. Dis. 13, e0007414 (2019).
Antinori, S., Galimberti, L., Milazzo, L. & Corbellino, M. Biology of human malaria Plasmodia including Plasmodium Knowlesi. Mediterr. J. Hematol. Infect. Dis. 4, e2012013 (2012).
Mueller, I., Zimmerman, P. A. & Reeder, J. C. Plasmodium malariae and Plasmodium ovale-the ‘bashful’ malaria parasites. Trends Parasitol. 23, 278–283 (2007).
Culleton, R., Pain, A. & Snounou, G. Plasmodium malariae: the persisting mysteries of a persistent parasite. Trends Parasitol. 39, 113–125 (2023).
Garnham, P. C. C. Malaria Parasites and Other Haemosporidia (Blackwell Scientific Publications Ltd., 1967).
Coatney, G. R. (eds. George R., Collins, W. E., Warren, M. & Contacos, P. G.) The Primate Malarias (CDC, 1971).
Markus, M. B. Do hypnozoites cause relapse in malaria? Trends Parasitol. 31, 239–245 (2015).
Grande, R., Antinori, S., Meroni, L., Menegon, M. & Severini, C. A case of Plasmodium malariae recurrence: recrudescence or reinfection? Malar. J. 18, 169 (2019).
Marteau, A. et al. Severe long-delayed malaria caused by Plasmodium malariae in an elderly French patient. Malar. J. 20, 337 (2021).
Tournoy, T. K., Rosanas-Urgell, A., Van Esbroeck, M., Bottieau, E. & Huits, R. Plasmodium malariae after successful treatment of P. falciparum malaria with artemether-lumefantrine. Int. J. Infect. Dis. 119, 56–58 (2022).
Rutledge, G. G. et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature 542, 101–104 (2017).
Gimenez, A. M., Marques, R. F., Regiart, M. & Bargieri, D. Y. Diagnostic methods for non-Falciparum malaria. Front. Cell Infect. Microbiol. 11, 681063 (2021).
Bruce, M. C., Macheso, A., McConnachie, A. & Molyneux, M. E. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi. Malar. J. 10, 38 (2011).
Oriero, E. C., Amenga-Etego, L., Ishengoma, D. S. & Amambua-Ngwa, A. Plasmodium malariae, current knowledge and future research opportunities on a neglected malaria parasite species. Crit. Rev. Microbiol. 47, 44–56 (2021).
Rutledge, G. G. et al. Genomic Characterization of Recrudescent Plasmodium malariae after treatment with artemether/lumefantrine. Emerg. Infect. Dis. 23, 1300–1307 (2017).
Fuehrer, H.-P., Campino, S. & Sutherland, C. J. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar. J. 21, 138 (2022).
Kumar, G. & Shankar, H. Unravelling the situation of malaria misdiagnosis in India: its adverse impact and management strategies. Asian Pac. J. Trop. Med. 15, 290 (2022).
Yerlikaya, S., Campillo, A. & Gonzalez, I. J. A systematic review: performance of rapid diagnostic tests for the detection of Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale monoinfections in human blood. J. Infect. Dis. 218, 265–276 (2018).
Abba, K. et al. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. Cochrane Database Syst. Rev. 2014, CD011431 (2014).
Lo, E. et al. Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerg. Infect. Dis. 23, 601–610 (2017).
Roman, D. N. R. et al. Asymptomatic Plasmodium malariae infections in children from suburban areas of Yaoundé, Cameroon. Parasitol. Int. 67, 29–33 (2018).
Nguiffo-Nguete, D. et al. Plasmodium malariae contributes to high levels of malaria transmission in a forest-savannah transition area in Cameroon. Parasit. Vectors 16, 31 (2023).
Bousema, J. T. et al. Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am. J. Trop. Med. Hyg. 78, 442–448 (2008).
Holzschuh, A. et al. Co-infection of the four major Plasmodium species: effects on densities and gametocyte carriage. PLoS Negl. Trop. Dis. 16, e0010760 (2022).
Kho, S. et al. Diagnostic performance of a 5-plex malaria immunoassay in regions co-endemic for Plasmodium falciparum, P. vivax, P. knowlesi, P. malariae and P. ovale. Sci. Rep. 12, 7286 (2022).
Royero-Bermeo, W. Y., Sánchez-Jiménez, M. M. & Ospina-Villa, J. D. Aptamers as innovative tools for malaria diagnosis and treatment: advances and future perspectives. Biol. Methods Protoc. 10, bpaf025 (2025).
Alam, M. S. et al. Aptamer-based diagnosis for Plasmodium vivax specific malaria. ACS Infect. Dis. 11, 762–772 (2025).
Brosseau, N. E., Vallée, I., Mayer-Scholl, A., Ndao, M. & Karadjian, G. Aptamer-based technologies for parasite detection. Sensors 23, 562 (2023).
Oviedo, A. et al. Spatial cluster analysis of Plasmodium vivax and P. malariae exposure using serological data among Haitian school children sampled between 2014 and 2016. PLoS Negl. Trop. Dis. 16, e0010049 (2022).
Cunningham, C. H. et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. EBioMedicine 68, 103415 (2021).
Lee, R. A. et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl. Acad. Sci. USA 117, 25722–25731 (2020).
Elizardez, Y. B. et al. Recombinant proteins of Plasmodium malariae merozoite surface protein 1 (PmMSP1): testing immunogenicity in the BALB/c model and potential use as diagnostic tool. PLoS ONE 14, e0219629 (2019).
Li, M. et al. Immunogenic and diagnostic potential of recombinant apical membrane antigen-1 from Plasmodium malariae. Diagn. Microbiol. Infect. Dis. 110, 116480 (2024).
Ansah, F. et al. Development of cooperative primer-based real-time PCR assays for the detection of Plasmodium malariae and Plasmodium ovale. J. Mol. Diagn. 23, 1393–1403 (2021).
Assefa, A. et al. Detection of P. malariae using a new rapid isothermal amplification lateral flow assay. Malar. J. 23, 104 (2024).
Lin, H. et al. Rapid visual detection of Plasmodium using recombinase-aided amplification with lateral flow dipstick assay. Front. Cell. Infect. Microbiol. 12, 922146 (2022).
Siriyod, N. et al. Microfluidic paper-based analytical device for point-of-care nucleic acid quantification of malaria. Microchem. J. 212, 113139 (2025).
Sazed, S. A., Kibria, M. G. & Alam, M. S. An optimized real-time qPCR method for the effective detection of human malaria infections. Diagnostics 11, 736 (2021).
Tsagkaris, C. et al. WHEN QUARTAN FEVER RELIEVED DEPRESSION: THE INCEPTION OF PYRETOTHERAPY IN THE GRECO-ROMAN ANTIQUITY. Wiad. Lek. 75, 1900–1902 (2022).
Kotepui, M., Kotepui, K. U., Milanez, G. D. & Masangkay, F. R. Global prevalence and mortality of severe Plasmodium malariae infection: a systematic review and meta-analysis. Malar. J. 19, 274 (2020).
Langford, S. et al. Plasmodium malariae infection associated with a high burden of anemia: a hospital-based surveillance study. PLoS Negl. Trop. Dis. 9, e0004195 (2015).
Douglas, N. M. et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 10, e1001575 (2013).
Silva, G. B. da, Pinto, J. R., Barros, E. J. G., Farias, G. M. N. & Daher, E. D. F. Kidney involvement in malaria: an update. Rev. Inst. Med. Trop. Sao Paulo 59, e53 (2017).
Gentile, F. et al. From Uganda to Italy: a case of nephrotic syndrome secondary to Plasmodium infection, Quartan malarial nephropathy and kidney failure. Turk. J. Pediatr. 61, 776–779 (2019).
Gilles, H. M. & Hendrickse, R. G. Nephrosis in Nigerian children. Role of Plasmodium malariae, and effect of antimalarial treatment. Br. Med. J. 2, 27–31 (1963).
Badiane, A. S. et al. Acute kidney injury associated with Plasmodium malariae infection. Malar. J. 13, 226 (2014).
Possemiers, H. et al. Experimental malaria-associated acute kidney injury is independent of parasite sequestration and resolves upon antimalarial treatment. Front. Cell. Infect. Microbiol. 12, 915792 (2022).
Katsoulis, O., Georgiadou, A. & Cunnington, A. J. Immunopathology of acute kidney injury in severe malaria. Front. Immunol. 12, 651739 (2021).
Goretzki, S. et al. Congenital infection with Plasmodium malariae: a rare case of intrauterine transmission in Germany. Malar. J. 24, 91 (2025).
Popkin-Hall, Z. R. et al. Prevalence of non-falciparum malaria infections among asymptomatic individuals in four regions of Mainland Tanzania. Parasit. Vectors 17, 153 (2024).
Popkin-Hall, Z. R. et al. Population genomics of Plasmodium malariae from four African countries. Preprint at medRxiv https://doi.org/10.1101/2024.09.07.24313132 (2024).
Choisy, M. & de Roode, J. C. Mixed infections and the evolution of virulence: effects of resource competition, parasite plasticity, and impaired host immunity. Am. Nat. 175, E105–E118 (2010).
Dao, F. et al. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl. Trop. Dis. 19, e0012790 (2025).
WHO Guidelines for Malaria, 16 October 2023. https://iris.who.int/bitstream/handle/10665/373339/WHO-UCN-GMP-2023.01-Rev.1-eng.pdf (2023).
Groger, M. et al. Effectiveness of pyronaridine-artesunate against Plasmodium malariae, Plasmodium ovale spp, and mixed-Plasmodium infections: a post-hoc analysis of the CANTAM-Pyramax trial. Lancet Microbe 3, e598–e605 (2022).
Dembele, L. et al. Plasmodium malariae and Plasmodium falciparum comparative susceptibility to antimalarial drugs in Mali. J. Antimicrob. Chemother. 76, 2079–2087 (2021).
Woodford, J. et al. An experimental human blood-stage model for studying Plasmodium malariae infection. J. Infect. Dis. 221, 948–955 (2020).
Maitland, K. et al. The interaction between Plasmodium falciparum and P. vivax in children on Espiritu Santo Island, Vanuatu. Trans. R. Soc. Trop. Med. Hyg. 90, 614–620 (1996).
Low, L. M. et al. Controlled infection immunization using delayed death drug treatment elicits protective immune responses to blood-stage malaria parasites. Infect. Immun. 87, e00587-18 (2019).
Rénia, L. & Goh, Y. S. Malaria parasites: the great escape. Front. Immunol. 7, 463 (2016).
Zimmerman, P. A., Mehlotra, R. K., Kasehagen, L. J. & Kazura, J. W. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol. 20, 440–447 (2004).
Collins, W. E. & Jeffery, G. M. A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium Falciparum in patients previously infected with heterologous species of Plasmodium: effect on development of parasitologic and clinical immunity. Am. J. Trop. Med. Hyg. 61, 36–43 (1999).
Wykes, M. N. et al. Rodent blood-stage Plasmodium survive in dendritic cells that infect naive mice. Proc. Natl. Acad. Sci. USA 108, 11205–11210 (2011).
Tsuchida, H., Yamaguchi, K., Yamamoto, S. & Ebisawa, I. Quartan malaria following splenectomy 36 years after infection. Am. J. Trop. Med. Hyg. 31, 163–165 (1982).
Monteiro, E. F. et al. Antibody profile comparison against MSP1 antigens of multiple Plasmodium species in human serum samples from two different Brazilian populations using a multiplex serological assay. Pathogens 10, 1138 (2021).
Schmid-Hempel, P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 85–98 (2009).
May, R. M. & Nowak, M. A. Coinfection and the evolution of parasite virulence. Proc. R. Soc. Lond. Ser. B Biol. Sci. 261, 209–215 (1997).
Bruce, M. C. & Day, K. P. Cross-species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. Trends Parasitol. 19, 271–277 (2003).
Acknowledgements
This work was supported by the Israel Science Foundation (ISF) under the Joint Canada-Israel Health Research Program, Grant No. 3000/22 to A.F. A.F. is supported by The Abisch-Frenkel Faculty Development Lectureship.
Author information
Authors and Affiliations
Contributions
H.S., G.K., N.A., and A.F. together wrote the manuscript. H.S. and A.F. conceived the idea, G.K. with H.S. wrote the first draft, N.A. is a WHO Level 1 certified microscopist provided the Giemsa-stained P.m. light microscopy image and its identifying features. AF created the images and edited the manuscript. All authors read and approved the final submitted version.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Medicine thanks Daniel Nguiffo-Nguete and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Shankar, H., Kumar, G., Ahmed, N. et al. Plasmodium malariae is an overlooked malaria parasite with emerging challenges. Commun Med (2026). https://doi.org/10.1038/s43856-025-01360-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43856-025-01360-1


