Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Designing highly delocalized solitons by harnessing the structural parity of π-conjugated polymers

Abstract

π-Conjugated polymers are a class of materials featuring an alternation of single and double bonds along their backbone, a configuration that can result in delocalized π-electrons. The unique electronic structure of these polymers makes them vital in applications such as organic electronics, solar cells and light-emitting diodes. A key feature in such materials is the emergence of topological quasiparticles, termed solitons, which are crucial for their observed high electrical conductivity. By using on-surface synthesis, we present a chemical reaction based on the regio- and stereoselective coupling of indenyl moieties for fabricating π-conjugated acenoindenylidene polymers, which feature a longitudinal polyacetylene backbone, on a Au(111) surface. The relationship between structural parity and electronic properties is investigated. We discover that odd-membered polymers exhibit an in-gap soliton state, which, due to their low bandgaps, spatially extends several nanometres along the longitudinal polyacetylene backbone. Our findings pave the way for the design of π-conjugated polymers that are able to host intrinsic solitons through chemical design by exploiting structural parity, without the need for external doping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solution synthesis of precursor 1 and on-surface synthesis of polymer 3.
Fig. 2: On-surface synthesis of polymer 3 on Au(111).
Fig. 3: Most favourable reaction pathways for the C–H cleavage of precursor 1 after its deposition and the posterior polymerization of intermediate 2.
Fig. 4: Electronic structure of polymer 3 with respect to its structural parity.
Fig. 5: High delocalization of the soliton in polymer 3o.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available at the IMDEA Nanoscience repository via https://repositorio.imdeananociencia.org/home.

Code availability

The Fireball software package is available at https://github.com/fireball-QMD and the PP-SPM software package can be downloaded at https://github.com/Probe-Particle/ppafm#probe-particle-model. FHi-aims code is a commercial package available upon request from the developers. The Amber code and the necessary postprocessing tools are available for non-commercial use at the website of the Amber project: https://ambermd.org/index.php.

References

  1. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).

    CAS  Google Scholar 

  2. K, N. & Rout, C. S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659–5697 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roth, S. & Carroll, D. in Foundations of Solid State Physics, 301–401 (Wiley, 2019).

  4. Facchetti, A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011).

    CAS  Google Scholar 

  5. Guo, X., Baumgarten, M. & Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832–1908 (2013).

    CAS  Google Scholar 

  6. Oka, K., Winther-Jensen, B. & Nishide, H. Organic π-conjugated polymers as photocathode materials for visible-light-enhanced hydrogen and hydrogen peroxide production from water. Adv. Energy Mat. 11, 2003724 (2021).

    CAS  Google Scholar 

  7. Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017).

    CAS  Google Scholar 

  8. Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, Q., Zhang, R., Qiu, J., Liu, R. & Xu, W. On-surface synthesis of carbon nanostructures. Adv. Mat. 30, 1705630 (2018).

    Google Scholar 

  10. Gu, Y., Qiu, Z. & Müllen, K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J. Am. Chem. Soc. 144, 11499–11524 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021).

    CAS  PubMed  Google Scholar 

  12. Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021).

    CAS  PubMed  Google Scholar 

  13. Biswas, K. et al. Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition. J. Am. Chem. Soc. 145, 2968–2974 (2023).

    CAS  PubMed  Google Scholar 

  14. Sánchez-Grande, A. et al. On-surface synthesis of ethynylene bridged anthracene polymers. Angew. Chem. Int. Ed. 58, 6559–6563 (2019).

    Google Scholar 

  15. Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 15, 437–443 (2020).

    CAS  PubMed  Google Scholar 

  16. Sánchez-Grande, A. et al. Surface-assisted synthesis of N-nontaining π-conjugated polymers. Adv. Sci. 9, 2200407 (2022).

    Google Scholar 

  17. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  18. Talirz, L., Ruffieux, P. & Fasel, R. On-surface synthesis of atomically precise graphene nanoribbons. Adv. Mat. 28, 6222–6231 (2016).

    CAS  Google Scholar 

  19. Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

    CAS  PubMed  Google Scholar 

  20. Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).

    PubMed  Google Scholar 

  21. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199 (2018).

    CAS  PubMed  Google Scholar 

  22. Fan, Q. et al. Biphenylene network: a nonbenzenoid carbon allotrope. Science 372, 852–856 (2021).

    CAS  PubMed  Google Scholar 

  23. Weiss, C. et al. Imaging Pauli repulsion in scanning tunneling microscopy. Phys. Rev. Lett. 105, 086103 (2010).

    CAS  PubMed  Google Scholar 

  24. Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).

    CAS  Google Scholar 

  25. Zhang, C., Yi, Z. & Xu, W. Scanning probe microscopy in probing low-dimensional carbon-based nanostructures and nanomaterials. Mater. Futures 1, 032301 (2022).

    CAS  Google Scholar 

  26. Hernangómez-Pérez, D., Gunasekaran, S., Venkataraman, L. & Evers, F. Solitonics with polyacetylenes. Nano Lett. 20, 2615–2619 (2020).

    PubMed  Google Scholar 

  27. Shi, J., Li, L. & Li, Y. o-Silylaryl triflates: a journey of Kobayashi aryne precursors. Chem. Rev. 121, 3892–4044 (2021).

    CAS  PubMed  Google Scholar 

  28. Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Écija, D. et al. Crossover site-selectivity in the adsorption of the fullerene derivative PCBM on Au(111). Angew. Chem. Int. Ed. 46, 7874–7877 (2007).

    Google Scholar 

  30. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110 (2009).

    CAS  PubMed  Google Scholar 

  31. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    CAS  PubMed  Google Scholar 

  32. Biswas, K. et al. Interplay between π-conjugation and exchange magnetism in one-dimensional porphyrinoid polymers. J. Am. Chem. Soc. 144, 12725–12731 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mendieta-Moreno, J. I. et al. Fireball/Amber: an efficient local-orbital DFT QM/MM method for biomolecular systems. J. Chem. Theory Comput. 10, 2185–2193 (2014).

    CAS  PubMed  Google Scholar 

  34. E, W., Ren, W. & Vanden-Eijnden, E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126, 164103 (2007).

    PubMed  Google Scholar 

  35. Liu, X. et al. Exploiting cooperative catalysis for the on-surface synthesis of linear heteroaromatic polymers via selective C–H activation. Angew. Chem. Int. Ed. 61, e202112798 (2022).

    CAS  Google Scholar 

  36. Mendieta-Moreno, J. I. et al. Unusual scaffold rearrangement in polyaromatic hydrocarbons driven by concerted action of single gold atoms on a gold surface. Angew. Chem. Int. Ed. 61, e202208010 (2022).

    CAS  Google Scholar 

  37. Lowe, B. et al. Selective activation of aromatic C–H bonds catalyzed by single gold atoms at room temperature. J. Am. Chem. Soc. 144, 21389–21397 (2022).

    CAS  PubMed  Google Scholar 

  38. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    CAS  Google Scholar 

  39. Wang, S. et al. On-surface synthesis and characterization of individual polyacetylene chains. Nat. Chem. 11, 924–930 (2019).

    CAS  PubMed  Google Scholar 

  40. Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 366, 623–627 (2019).

    CAS  PubMed  Google Scholar 

  41. Horcas, I. et al. WSxM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  PubMed  Google Scholar 

  42. Case, D. A. Amber 2018 (2018).

  43. Lewis, J. P. et al. Advances and applications in the Fireball ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B 248, 1989–2007 (2011).

    CAS  Google Scholar 

  44. Heinz, H., Lin, T.-J., Kishore Mishra, R. & Emami, F. S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29, 1754–1765 (2013).

    CAS  PubMed  Google Scholar 

  45. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1998).

    Google Scholar 

  46. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  47. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  48. Darve, E. & Pohorille, A. Calculating free energies using average force. J. Chem. Phys. 115, 9169–9183 (2001).

    CAS  Google Scholar 

  49. Izrailev, S. et al. in Computational Molecular Dynamics: Challenges, Methods, Ideas (eds Deuflhard, P. et al.) 39–65 (Springer, 1999).

  50. Pastor, R. W., Brooks, B. R. & Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys. 65, 1409–1419 (1988).

    Google Scholar 

  51. Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    CAS  Google Scholar 

  52. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    PubMed  Google Scholar 

  53. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    CAS  Google Scholar 

  54. Krejčí, O., Hapala, P., Ondráček, M. & Jelínek, P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017).

    Google Scholar 

  55. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from MCIN/AEI/10.13039/501100011033 through grants PID2019-108532GB-I00, PID2022-139933NB-I00 and PID2022-140845OB-C62. We acknowledge support from the (MAD2D-CM)-IMDEA-Nanociencia project funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Union. We thank support from the European Regional Development Fund of the European Union, from Xunta de Galicia (Centro de Investigación de Galicia accreditation 2019–2022, ED431G 2019/03) and Xunta de Galicia-Gain Oportunius Program. We appreciate funding from the CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) and project GACR number 20-13692X. J.I.U. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 886314 and financial support from MCIU for the Ramón y Cajal program (RYC2022-037352-I). J.J. and B.A. thank the Agencia Estatal de Investigación for the award of predoctoral fellowships (PRE2020-092897 and BES-2017-079748, respectively). A.G. and A.B. acknowledge financial support from the Juan de la Cierva Program.

Author information

Authors and Affiliations

Authors

Contributions

J.I.U., P.J., D. Peña and D.E. conceived the project. D.E. coordinated the research efforts. K.B., A.B., O.S., A.P.S., K.L., J.M.G., R.M., J.I.U. and D.E. acquired and analysed the experimental data. A.G., M.L., D.S.-P. and P.J. performed the calculations. J.J., B.A., D. Pérez and D. Peña designed and synthesized the molecular precursor. K.B., J.I.U., P.J., D. Peña and D.E. wrote the manuscript with contributions from the other authors.

Corresponding authors

Correspondence to José I. Urgel, Pavel Jelínek, Diego Peña or David Écija.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Ingmar Swart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary synthesis discussion, Figs. 1–29 and references.

Supplementary Data 1

Unprocessed original STM, nc-AFM and simulated images in jpg format, for each corresponding Supplementary Figure.

Source data

Source Data Fig. 2

For each panel, unprocessed original STM and nc-AFM images in jpg format and txt files indicating the experimental parameters.

Source Data Fig. 4

For each panel, unprocessed original STM and nc-AFM images in jpg format and txt files indicating the experimental parameters.

Source Data Fig. 5

For each panel, unprocessed original STM and nc-AFM images in jpg format and txt files indicating the experimental parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, K., Janeiro, J., Gallardo, A. et al. Designing highly delocalized solitons by harnessing the structural parity of π-conjugated polymers. Nat. Synth 4, 233–242 (2025). https://doi.org/10.1038/s44160-024-00665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00665-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing