Abstract
Compared with conventional thermally initiated radical polymerization, photocontrolled radical polymerization offers mild, environmentally friendly reaction conditions, fast polymerization rates, high end-group fidelity and spatiotemporal control. Access to ultrahigh-molecular-weight (UHMW) polymers with precisely defined molecular weights, structures and topologies requires a high degree of living character with minimal side reactions and has been a longstanding challenge in polymer synthesis. The recent development of photocontrolled radical polymerization has enabled facile synthesis of UHMW polymers. Here we discuss methods for producing various UHMW polymers via photocontrolled radical polymerization, including photoiniferter reversible addition–fragmentation chain transfer (RAFT) polymerization, photoinduced electron/energy transfer–RAFT polymerization, photoenzymatic RAFT polymerization, photocontrolled atom transfer radical polymerization and photocontrolled organotellurium-mediated radical polymerization, followed by an overview of the applications of UHMW polymers as high-performance materials. Finally, we provide our future perspective for developments in this emerging field.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Carmean, R. N. et al. Ultrahigh molecular weight hydrophobic acrylic and styrenic polymers through organic-phase photoiniferter-mediated polymerization. ACS Macro Lett. 9, 613–618 (2020).
Mapas, J. K. D., Thomay, T., Cartwright, A. N., Ilavsky, J. & Rzayev, J. Ultrahigh molecular weight linear block copolymers: rapid access by reversible-deactivation radical polymerization and self-assembly into large domain nanostructures. Macromolecules 49, 3733–3738 (2016).
Li, R. & An, Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization. Angew. Chem. Int. Ed. 59, 22258–22264 (2020).
Shanmugam, S., Ross, G., Mbuncha, C. Y. & Santra, A. Rapid, green synthesis of high performance viscosifiers via a photoiniferter approach for water-based drilling fluids. Polym. Chem. 12, 6705–6713 (2021).
Hayashi, M., Noro, A. & Matsushita, Y. Highly extensible supramolecular elastomers with large stress generation capability originating from multiple hydrogen bonds on the long soft network strands. Macromol. Rapid Commun. 37, 678–684 (2016).
An, Z. 100th anniversary of macromolecular science viewpoint: achieving ultrahigh molecular weights with reversible deactivation radical polymerization. ACS Macro Lett. 9, 350–357 (2020).
Liu, S. The future of free radical polymerizations. Chem. Mater. 36, 1779–1780 (2024).
Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).
Rzayev, J. & Penelle, J. HP-RAFT: a free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights. Angew. Chem. Int. Ed. 43, 1691–1694 (2004).
Arita, T., Kayama, Y., Ohno, K., Tsujii, Y. & Fukuda, T. High-pressure atom transfer radical polymerization of methyl methacrylate for well-defined ultrahigh molecular-weight polymers. Polymer 49, 2426–2429 (2008).
Read, E. et al. Low temperature RAFT/MADIX gel polymerisation: access to controlled ultra-high molar mass polyacrylamides. Polym. Chem. 5, 2202–2207 (2014).
Liu, Z., Lv, Y. & An, Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angew. Chem. Int. Ed. 56, 13852–13856 (2017).
Reyhani, A. et al. Synthesis of ultra-high molecular weight polymers by controlled production of initiating radicals. J. Polym. Sci. A Polym. Chem. 57, 1922–1930 (2019).
Simms, R. W. & Cunningham, M. F. High molecular weight poly(butyl methacrylate) by reverse atom transfer radical polymerization in miniemulsion initiated by a redox system. Macromolecules 40, 860–866 (2007).
Zhang, X.-Y. et al. RAFT-polymerization-induced self-assembly and reorganizations: ultrahigh-molecular-weight polymer and morphology-tunable micro-/nanoparticles in one pot. Macromol. Rapid Commun. 37, 1735–1741 (2016).
Truong, N. P., Dussert, M. V., Whittaker, M. R., Quinn, J. F. & Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 6, 3865–3874 (2015).
Zetterlund, P. B., Thickett, S. C., Perrier, S., Bourgeat-Lami, E. & Lansalot, M. Controlled/living radical polymerization in dispersed systems: an update. Chem. Rev. 115, 9745–9800 (2015).
Canning, S. L., Smith, G. N. & Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49, 1985–2001 (2016).
Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016).
Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).
Aydogan, C., Yilmaz, G., Shegiwal, A., Haddleton, D. M. & Yagci, Y. Photoinduced controlled/living polymerizations. Angew. Chem. Int. Ed. 61, e202117377 (2022).
Hartlieb, M. Photo-iniferter RAFT polymerization. Macromol. Rapid Commun. 43, 2100514 (2022).
Otsu, T. & Yoshida, M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol. Chem. Rapid Commun. 3, 127–132 (1982).
McKenzie, T. G., Fu, Q., Wong, E. H. H., Dunstan, D. E. & Qiao, G. G. Visible light mediated controlled radical polymerization in the absence of exogenous radical sources or catalysts. Macromolecules 48, 3864–3872 (2015).
Ding, C. et al. Photocatalyst-free and blue light-induced RAFT polymerization of vinyl acetate at ambient temperature. Macromol. Rapid Commun. 36, 2181–2185 (2015).
Allegrezza, M. L. et al. Substituent effects in iniferter photopolymerization: can bond homolysis be enhanced by electronics? Polym. Chem. 11, 6129–6133 (2020).
McKenzie, T. G., Costa, L. Pd. M., Fu, Q., Dunstan, D. E. & Qiao, G. G. Investigation into the photolytic stability of RAFT agents and the implications for photopolymerization reactions. Polym. Chem. 7, 4246–4253 (2016).
Nothling, M. D. et al. Progress and perspectives beyond traditional RAFT polymerization. Adv. Sci. 7, 2001656 (2020).
Carmean, R. N., Becker, T. E., Sims, M. B. & Sumerlin, B. S. Ultra-high molecular weights via aqueous reversible-deactivation radical polymerization. Chem 2, 93–101 (2017).
Valdebenito, A. & Encinas, M. V. Effect of solvent on the free radical polymerization of N,N-dimethylacrylamide. Polym. Int. 59, 1246–1251 (2010).
Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern molecular photochemistry of organic molecules. Photochem. Photobiol. 88, 1033 (2012).
Shanmugam, S., Cuthbert, J., Kowalewski, T., Boyer, C. & Matyjaszewski, K. Catalyst-free selective photoactivation of RAFT polymerization: a facile route for preparation of comblike and bottlebrush polymers. Macromolecules 51, 7776–7784 (2018).
Xu, J., Shanmugam, S., Corrigan, N. A. & Boyer, C. Catalyst-free visible light-induced RAFT photopolymerization. In Controlled Radical Polymerization: Mechanisms 247–267 (Symposium Series Volume 1187, American Chemical Society, 2015).
Streicher, M., Boyko, V. & Blanazs, A. Ultra-high-molecular-weight, narrow-polydispersity polyacrylamides synthesized using photoiniferter polymerization to generate high-performance flocculants. ACS Appl. Mater. Interfaces 15, 59044–59054 (2023).
Lewis, R. W., Evans, R. A., Malic, N., Saito, K. & Cameron, N. R. Ultra-fast aqueous polymerisation of acrylamides by high power visible light direct photoactivation RAFT polymerisation. Polym. Chem. 9, 60–68 (2018).
Plucinski, A. & Schmidt, B. V. K. J. pH sensitive water-in-water emulsions based on the pullulan and poly(N,N-dimethylacrylamide) aqueous two-phase system. Polym. Chem. 13, 4170–4177 (2022).
Plucinski, A., Pavlovic, M. & Schmidt, B. V. K. J. All-aqueous multi-phase systems and emulsions formed via low-concentration ultra-high-molar mass polyacrylamides. Macromolecules 54, 5366–5375 (2021).
Allison-Logan, S. et al. Highly living stars via core-first photo-RAFT polymerization: exploitation for ultra-high molecular weight star synthesis. ACS Macro Lett. 8, 1291–1295 (2019).
Hwang, C. et al. Realizing cross-linking-free acrylic pressure-sensitive adhesives with intensive chain entanglement through visible-light-mediated photoiniferter-reversible addition–fragmentation chain-transfer polymerization. ACS Appl. Mater. Interfaces 15, 58905–58916 (2023).
Whitfield, R. et al. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem. Sci. 10, 8724–8734 (2019).
Qin, X.-L. & An, Z.-S. Reversible addition-fragmentation chain transfer dispersity regulation by chain transfer agent micelles. Acta Polym. Sin. 55, 67–78 (2024).
Ma, Q., Qiao, G. G. & An, Z. Visible light photoiniferter polymerization for dispersity control in high molecular weight polymers. Angew. Chem. Int. Ed. 62, e202314729 (2023).
Cunningham, V. J., Derry, M. J., Fielding, L. A., Musa, O. M. & Armes, S. P. RAFT aqueous dispersion polymerization of N-(2-(methacryloyloxy)ethyl)pyrrolidone: a convenient low viscosity route to high molecular weight water-soluble copolymers. Macromolecules 49, 4520–4533 (2016).
McBride, R. J., Miller, J. F., Blanazs, A., Hähnle, H.-J. & Armes, S. P. Synthesis of high molecular weight water-soluble polymers as low-viscosity latex particles by RAFT aqueous dispersion polymerization in highly salty media. Macromolecules 55, 7380–7391 (2022).
McBride, R. J. et al. Low-viscosity route to high-molecular-weight water-soluble polymers: exploiting the salt sensitivity of poly(N-acryloylmorpholine). Macromolecules 57, 2432–2445 (2024).
Olson, R. A. et al. Inverse miniemulsion photoiniferter polymerization for the synthesis of ultrahigh molecular weight polymers. Macromolecules 55, 8451–8460 (2022).
Lott, M. E. et al. Ultrahigh-molecular-weight triblock copolymers via inverse miniemulsion photoiniferter polymerization. Macromolecules 57, 4007–4015 (2024).
Reis, M. H., Leibfarth, F. A. & Pitet, L. M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 9, 123–133 (2020).
Zhong, Z.-R., Chen, Y.-N., Zhou, Y. & Chen, M. Challenges and recent developments of photoflow-reversible deactivation radical polymerization (RDRP). Chin. J. Polym. Sci. 39, 1069–1083 (2021).
Davidson, C. L. G. IV et al. Inverse miniemulsion enables the continuous-flow synthesis of controlled ultra-high molecular weight polymers. ACS Macro Lett. 12, 1224–1230 (2023).
Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).
Phommalysack-Lovan, J., Chu, Y., Boyer, C. & Xu, J. PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem. Commun. 54, 6591–6606 (2018).
Lee, Y. Y., Boyer, C. & Kwon, M. S. Photocontrolled RAFT polymerization: past, present, and future. Chem. Soc. Rev. 52, 3035–3097 (2023).
Wu, C. et al. Rational design of photocatalysts for controlled polymerization: effect of structures on photocatalytic activities. Chem. Rev. 122, 5476–5518 (2022).
Chen, K., Guo, X. & Chen, M. Controlled radical copolymerization toward well-defined fluoropolymers. Angew. Chem. Int. Ed. 62, e202310636 (2023).
Gong, H. et al. Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation. Angew. Chem. Int. Ed. 59, 919–927 (2020).
Gu, Y., Wang, Z., Gong, H. & Chen, M. Investigations into CTA-differentiation-involving polymerization of fluorous monomers: exploitation of experimental variances in fine-tuning of molecular weights. Polym. Chem. 11, 7402–7409 (2020).
Zhou, C., Zhang, Z., Li, W. & Chen, M. Organocatalyzed photo-controlled synthesis of ultrahigh-molecular-weight fluorinated alternating copolymers. Angew. Chem. Int. Ed. 63, e202314483 (2024).
Zhao, L., Ren, X. & Yan, X. Assembly induced super-large red-shifted absorption: the burgeoning field of organic near-infrared materials. CCS Chem. 3, 678–693 (2021).
Shen, L., Lu, Q., Zhu, A., Lv, X. & An, Z. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst. ACS Macro Lett. 6, 625–631 (2017).
Yang, Y. & An, Z. Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit[7]uril complex. Polym. Chem. 10, 2801–2811 (2019).
Wang, Q. et al. Photoinduced ion-pair inner-sphere electron transfer-reversible addition–fragmentation chain transfer polymerization. J. Am. Chem. Soc. 144, 19942–19952 (2022).
An, Z., Zhu, S. & An, Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym. Chem. 12, 2357–2373 (2021).
Xia, Z. N., Shi, B. F., Zhu, W. J., Xiao, Y. & Lü, C. L. Binary hybridization strategy toward stable porphyrinic Zr-MOF encapsulated perovskites as high-performance heterogeneous photocatalysts for red to NIR light-induced PET-RAFT polymerization. Adv. Funct. Mater. 32, 2207655 (2022).
Xia, Z. et al. Integrating hybrid perovskite nanocrystals into metal–organic framework as efficient S-scheme heterojunction photocatalyst for synergistically boosting controlled radical photopolymerization under 980 nm NIR light. ACS Appl. Mater. Interfaces 15, 57119–57133 (2023).
Zhang, M., Wang, L., Shu, S., Sancar, A. & Zhong, D. Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield. Science 354, 209–213 (2016).
Zhou, F., Li, R., Wang, X., Du, S. & An, Z. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase. Angew. Chem. Int. Ed. 58, 9479–9484 (2019).
Li, R., Kong, W. & An, Z. Enzyme catalysis for reversible deactivation radical polymerization. Angew. Chem. Int. Ed. 61, e202202033 (2022).
Li, R., Kong, W. & An, Z. Controlling radical polymerization with biocatalysts. Macromolecules 56, 751–761 (2023).
Zhu, M. et al. Tyrosine residues initiated photopolymerization in living organisms. Nat. Commun. 14, 3598 (2023).
Nakabayashi, K. & Mori, H. Recent progress in controlled radical polymerization of N-vinyl monomers. Eur. Polym. J. 49, 2808–2838 (2013).
Guinaudeau, A. et al. Facile access to poly(N-vinylpyrrolidone)-based double hydrophilic block copolymers by aqueous ambient RAFT/MADIX polymerization. Macromolecules 47, 41–50 (2014).
Li, R.-Y. & An, Z.-S. Photoenzymatic RAFT emulsion polymerization with oxygen tolerance. Chin. J. Polym. Sci. 39, 1138–1145 (2021).
Wang, J.-S. & Matyjaszewski, K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).
Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).
Pan, X. et al. Photomediated controlled radical polymerization. Prog. Polym. Sci. 62, 73–125 (2016).
Szczepaniak, G. et al. Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chem. Sci. 13, 11540–11550 (2022).
Hu, X. et al. Red-light-driven atom transfer radical polymerization for high-throughput polymer synthesis in open air. J. Am. Chem. Soc. 145, 24315–24327 (2023).
Beuermann, S. & Buback, M. Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Prog. Polym. Sci. 27, 191–254 (2002).
Barner-Kowollik, C. et al. Critically evaluated termination rate coefficients for free-radical polymerization: experimental methods. Prog. Polym. Sci. 30, 605–643 (2005).
Rzayev, J. & Penelle, J. Controlled/living free-radical polymerization under very high pressure. Macromolecules 35, 1489–1490 (2002).
Maksym, P. et al. High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity. Polymer 140, 158–166 (2018).
Buback, M. & Morick, J. Equilibrium constants and activation rate coefficients for atom transfer radical polymerizations at pressures up to 2 500 bar. Macromol. Chem. Phys. 211, 2154–2161 (2010).
Maksym, P. et al. Light-mediated controlled and classical polymerizations of less-activated monomers under high-pressure conditions. Polym. Chem. 12, 4418–4427 (2021).
Bernat, R. et al. Visible-light-induced ATRP under high-pressure: synthesis of ultra-high-molecular-weight polymers. Chem. Commun. 60, 843–846 (2024).
Yamago, S., Iida, K. & Yoshida, J.-I. Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J. Am. Chem. Soc. 124, 2874–2875 (2002).
Yamago, S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem. Rev. 109, 5051–5068 (2009).
Yamago, S., Ukai, Y., Matsumoto, A. & Nakamura, Y. Organotellurium-mediated controlled/living radical polymerization initiated by direct C–Te bond photolysis. J. Am. Chem. Soc. 131, 2100–2101 (2009).
Zhao, H. et al. NIR photocontrolled organotellurium-mediated reversible-deactivation radical polymerization by activation of C–Te bonds with organotellurium radicals. Macromolecules 57, 1182–1194 (2024).
Fan, W., Tosaka, M., Yamago, S. & Cunningham, M. F. Living ab initio emulsion polymerization of methyl methacrylate in water using a water-soluble organotellurium chain transfer agent under thermal and photochemical conditions. Angew. Chem. Int. Ed. 57, 962–966 (2018).
Jiang, Y., Fan, W., Tosaka, M., Cunningham, M. F. & Yamago, S. Fabrication of structurally controlled poly(n-butyl acrylate) particles by ab initio emulsion organotellurium-mediated radical polymerization. Synthesis of high molecular weight homo and block copolymers. Macromolecules 54, 10691–10699 (2021).
Jiang, Y., Fan, W., Tosaka, M. & Yamago, S. Controlled synthesis of high-molecular-weight polystyrene and its block copolymers by emulsion organotellurium-mediated radical polymerization. ACS Macro Lett. 11, 1331–1335 (2022).
Trachsel, L., Konar, D., Hillman, J. D., Davidson, C. L. G. I. V. & Sumerlin, B. S. Diversification of acrylamide polymers via direct transamidation of unactivated tertiary amides. J. Am. Chem. Soc. 146, 1627–1634 (2024).
Ren, J. M. et al. Star polymers. Chem. Rev. 116, 6743–6836 (2016).
Despax, L., Fitremann, J., Destarac, M. & Harrisson, S. Low concentration thermoresponsive hydrogels from readily accessible triblock copolymers. Polym. Chem. 7, 3375–3377 (2016).
Dao, V. H., Cameron, N. R. & Saito, K. Synthesis of UHMW star-shaped AB block copolymers and their flocculation efficiency in high-ionic-strength environments. Macromolecules 52, 7613–7624 (2019).
Hsu, S.-Y. et al. Controlled synthesis of concentrated polymer brushes with ultralarge thickness by surface-initiated atom transfer radical polymerization under high pressure. Macromolecules 53, 132–137 (2020).
Dao, V. H., Cameron, N. R. & Saito, K. Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym. Chem. 7, 11–25 (2016).
Li, H., Long, J., Xu, Z. & Masliyah, J. H. Effect of molecular weight and charge density on the performance of polyacrylamide in low-grade oil sand ore processing. Can. J. Chem. Eng. 86, 177–185 (2008).
Su, X. & Feng, Y. Thermoviscosifying smart polymers for oil and gas production: state of the art. ChemPhysChem 19, 1941–1955 (2018).
Shanmugam, S., Ross, G., Mbuncha, C. Y. & Santra, A. High performance-branched microgels as universal viscosifiers for water-based drilling fluids. MRS Commun. 11, 755–761 (2021).
Albertsson, P. E. R. Å. Partition of proteins in liquid polymer–polymer two-phase systems. Nature 182, 709–711 (1958).
Chao, Y. & Shum, H. C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem. Soc. Rev. 49, 114–142 (2020).
Forciniti, D., Hall, C. K. & Kula, M. R. Influence of polymer molecular weight and temperature on phase composition in aqueous two-phase systems. Fluid Phase Equilib. 61, 243–262 (1991).
Mohammad, S. A., Shingdilwar, S., Banerjee, S. & Ameduri, B. Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications. Prog. Polym. Sci. 106, 101255 (2020).
He, X. et al. Adhesive tapes: from daily necessities to flexible smart electronics. Appl. Phys. Rev. 10, 011305 (2023).
Mapari, S., Mestry, S. & Mhaske, S. T. Developments in pressure-sensitive adhesives: a review. Polym. Bull. 78, 4075–4108 (2021).
Droesbeke, M. A., Aksakal, R., Simula, A., Asua, J. M. & Du Prez, F. E. Biobased acrylic pressure-sensitive adhesives. Prog. Polym. Sci. 117, 101396 (2021).
Diodati, L. E., Wong, A. J., Lott, M. E., Carter, A. G. & Sumerlin, B. S. Unraveling the properties of ultrahigh molecular weight polyacrylates. ACS Appl. Polym. Mater. 5, 9714–9720 (2023).
Wu, Z. & Boyer, C. Near-infrared light-induced reversible deactivation radical polymerization: expanding frontiers in photopolymerization. Adv. Sci. 10, 2304942 (2023).
Li, R., Zhang, S., Li, Q., Qiao, G. G. & An, Z. An atom-economic enzymatic cascade catalysis for high-throughput RAFT synthesis of ultrahigh molecular weight polymers. Angew. Chem. Int. Ed. 61, e202213396 (2022).
Rubens, M., Vrijsen, J. H., Laun, J. & Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 58, 3183–3187 (2019).
Zhou, Y., Gu, Y., Jiang, K. & Chen, M. Droplet-flow photopolymerization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries. Macromolecules 52, 5611–5617 (2019).
Semsarilar, M., Jones, E. R. & Armes, S. P. Comparison of pseudo-living character of RAFT polymerizations conducted under homogeneous and heterogeneous conditions. Polym. Chem. 5, 195–203 (2014).
Cornel, E. J., van Meurs, S., Smith, T., O’Hora, P. S. & Armes, S. P. In situ spectroscopic studies of highly transparent nanoparticle dispersions enable assessment of trithiocarbonate chain-end fidelity during RAFT dispersion polymerization in nonpolar media. J. Am. Chem. Soc. 140, 12980–12988 (2018).
Richardson, R. A. E. et al. Low-dispersity polymers in ab initio emulsion polymerization: improved macroRAFT agent performance in heterogeneous media. Macromolecules 53, 7672–7683 (2020).
Khan, M. et al. RAFT emulsion polymerization for (multi)block copolymer synthesis: overcoming the constraints of monomer order. Macromolecules 54, 736–746 (2021).
Wu, Z. et al. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem. Sci. 13, 11519–11532 (2022).
Zetterlund, P. B. & Perrier, S. RAFT polymerization under microwave irradiation: toward mechanistic understanding. Macromolecules 44, 1340–1346 (2011).
Perry, S. L. & Sing, C. E. 100th anniversary of macromolecular science viewpoint: opportunities in the physics of sequence-defined polymers. ACS Macro Lett. 9, 216–225 (2020).
Teator, A. J., Varner, T. P., Knutson, P. C., Sorensen, C. C. & Leibfarth, F. A. 100th anniversary of macromolecular science viewpoint: the past, present, and future of stereocontrolled vinyl polymerization. ACS Macro Lett. 9, 1638–1654 (2020).
Shanmugam, S. & Boyer, C. Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015).
Wu, Z., Peng, C.-H. & Fu, X. Tacticity control approached by visible-light induced organocobalt-mediated radical polymerization: the synthesis of crystalline poly(N,N-dimethylacrylamide) with high isotacticity. Polym. Chem. 11, 4387–4395 (2020).
Imamura, Y., Fujita, T., Kobayashi, Y. & Yamago, S. Tacticity, molecular weight, and temporal control by lanthanide triflate-catalyzed stereoselective radical polymerization of acrylamides with an organotellurium chain transfer agent. Polym. Chem. 11, 7042–7049 (2020).
Cai, B., Zhang, S. & Zhou, Y. Green stereoregular polymerization of poly(methyl methacrylate)s through vesicular catalysis. CCS Chem. 4, 1337–1346 (2022).
Zhang, X., Lin, F., Cao, M. & Zhong, M. Rare earth–cobalt bimetallic catalysis mediates stereocontrolled living radical polymerization of acrylamides. Nat. Synth. 2, 855–863 (2023).
Martinez, M. R. & Matyjaszewski, K. Degradable and recyclable polymers by reversible deactivation radical polymerization. CCS Chem. 4, 2176–2211 (2022).
Qin, B. & Zhang, X. On depolymerization. CCS Chem. 6, 297–312 (2024).
Zhang, S., Li, R. & An, Z. Degradable block copolymer nanoparticles synthesized by polymerization-induced self-assembly. Angew. Chem. Int. Ed. 63, e202315849 (2024).
Tardy, A., Nicolas, J., Gigmes, D., Lefay, C. & Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem. Rev. 117, 1319–1406 (2017).
Jones, G. R. et al. Reversed controlled polymerization (RCP): depolymerization from well-defined polymers to monomers. J. Am. Chem. Soc. 145, 9898–9915 (2023).
Martinez, M. R., Dadashi-Silab, S., Lorandi, F., Zhao, Y. & Matyjaszewski, K. Depolymerization of P(PDMS11MA) bottlebrushes via atom transfer radical polymerization with activator regeneration. Macromolecules 54, 5526–5538 (2021).
Wang, H. S., Truong, N. P., Pei, Z., Coote, M. L. & Anastasaki, A. Reversing RAFT polymerization: near-quantitative monomer generation via a catalyst-free depolymerization approach. J. Am. Chem. Soc. 144, 4678–4684 (2022).
Whitfield, R., Jones, G. R., Truong, N. P., Manring, L. E. & Anastasaki, A. Solvent-free chemical recycling of polymethacrylates made by ATRP and RAFT polymerization: high-yielding depolymerization at low temperatures. Angew. Chem. Int. Ed. 62, e202309116 (2023).
Hughes, R. W. et al. Bulk depolymerization of methacrylate polymers via pendent group activation. J. Am. Chem. Soc. 146, 6217–6224 (2024).
Acknowledgements
We thank the National Natural Science Foundation of China (22193020, 22193024 and 22371089) for financial support.
Author information
Authors and Affiliations
Contributions
S.Z., W.K., S.L., A.S. and Z.A. wrote the manuscript. S.P.A. and Z.A. revised the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhu, S., Kong, W., Lian, S. et al. Photocontrolled radical polymerization for the synthesis of ultrahigh-molecular-weight polymers. Nat. Synth 4, 15–30 (2025). https://doi.org/10.1038/s44160-024-00710-6
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44160-024-00710-6


