Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photocontrolled radical polymerization for the synthesis of ultrahigh-molecular-weight polymers

Abstract

Compared with conventional thermally initiated radical polymerization, photocontrolled radical polymerization offers mild, environmentally friendly reaction conditions, fast polymerization rates, high end-group fidelity and spatiotemporal control. Access to ultrahigh-molecular-weight (UHMW) polymers with precisely defined molecular weights, structures and topologies requires a high degree of living character with minimal side reactions and has been a longstanding challenge in polymer synthesis. The recent development of photocontrolled radical polymerization has enabled facile synthesis of UHMW polymers. Here we discuss methods for producing various UHMW polymers via photocontrolled radical polymerization, including photoiniferter reversible addition–fragmentation chain transfer (RAFT) polymerization, photoinduced electron/energy transfer–RAFT polymerization, photoenzymatic RAFT polymerization, photocontrolled atom transfer radical polymerization and photocontrolled organotellurium-mediated radical polymerization, followed by an overview of the applications of UHMW polymers as high-performance materials. Finally, we provide our future perspective for developments in this emerging field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoiniferter RAFT polymerization.
Fig. 2: Mechanism of PET–RAFT polymerization.
Fig. 3: Synthesis of UHMW polymers via PET–RAFT polymerization using various photocatalysts.
Fig. 4: Photoenzymatic RAFT polymerization.
Fig. 5: Photo-ATRP.
Fig. 6: Photo-TERP.
Fig. 7: Synthesis of star polymers.

Similar content being viewed by others

References

  1. Carmean, R. N. et al. Ultrahigh molecular weight hydrophobic acrylic and styrenic polymers through organic-phase photoiniferter-mediated polymerization. ACS Macro Lett. 9, 613–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Mapas, J. K. D., Thomay, T., Cartwright, A. N., Ilavsky, J. & Rzayev, J. Ultrahigh molecular weight linear block copolymers: rapid access by reversible-deactivation radical polymerization and self-assembly into large domain nanostructures. Macromolecules 49, 3733–3738 (2016).

    Article  CAS  Google Scholar 

  3. Li, R. & An, Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization. Angew. Chem. Int. Ed. 59, 22258–22264 (2020).

    Article  CAS  Google Scholar 

  4. Shanmugam, S., Ross, G., Mbuncha, C. Y. & Santra, A. Rapid, green synthesis of high performance viscosifiers via a photoiniferter approach for water-based drilling fluids. Polym. Chem. 12, 6705–6713 (2021).

    Article  CAS  Google Scholar 

  5. Hayashi, M., Noro, A. & Matsushita, Y. Highly extensible supramolecular elastomers with large stress generation capability originating from multiple hydrogen bonds on the long soft network strands. Macromol. Rapid Commun. 37, 678–684 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. An, Z. 100th anniversary of macromolecular science viewpoint: achieving ultrahigh molecular weights with reversible deactivation radical polymerization. ACS Macro Lett. 9, 350–357 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, S. The future of free radical polymerizations. Chem. Mater. 36, 1779–1780 (2024).

    Article  CAS  Google Scholar 

  8. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    Article  CAS  Google Scholar 

  9. Rzayev, J. & Penelle, J. HP-RAFT: a free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights. Angew. Chem. Int. Ed. 43, 1691–1694 (2004).

    Article  CAS  Google Scholar 

  10. Arita, T., Kayama, Y., Ohno, K., Tsujii, Y. & Fukuda, T. High-pressure atom transfer radical polymerization of methyl methacrylate for well-defined ultrahigh molecular-weight polymers. Polymer 49, 2426–2429 (2008).

    Article  CAS  Google Scholar 

  11. Read, E. et al. Low temperature RAFT/MADIX gel polymerisation: access to controlled ultra-high molar mass polyacrylamides. Polym. Chem. 5, 2202–2207 (2014).

    Article  CAS  Google Scholar 

  12. Liu, Z., Lv, Y. & An, Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angew. Chem. Int. Ed. 56, 13852–13856 (2017).

    Article  CAS  Google Scholar 

  13. Reyhani, A. et al. Synthesis of ultra-high molecular weight polymers by controlled production of initiating radicals. J. Polym. Sci. A Polym. Chem. 57, 1922–1930 (2019).

    Article  CAS  Google Scholar 

  14. Simms, R. W. & Cunningham, M. F. High molecular weight poly(butyl methacrylate) by reverse atom transfer radical polymerization in miniemulsion initiated by a redox system. Macromolecules 40, 860–866 (2007).

    Article  CAS  Google Scholar 

  15. Zhang, X.-Y. et al. RAFT-polymerization-induced self-assembly and reorganizations: ultrahigh-molecular-weight polymer and morphology-tunable micro-/nanoparticles in one pot. Macromol. Rapid Commun. 37, 1735–1741 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Truong, N. P., Dussert, M. V., Whittaker, M. R., Quinn, J. F. & Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 6, 3865–3874 (2015).

    Article  CAS  Google Scholar 

  17. Zetterlund, P. B., Thickett, S. C., Perrier, S., Bourgeat-Lami, E. & Lansalot, M. Controlled/living radical polymerization in dispersed systems: an update. Chem. Rev. 115, 9745–9800 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Canning, S. L., Smith, G. N. & Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49, 1985–2001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).

    Article  CAS  Google Scholar 

  21. Aydogan, C., Yilmaz, G., Shegiwal, A., Haddleton, D. M. & Yagci, Y. Photoinduced controlled/living polymerizations. Angew. Chem. Int. Ed. 61, e202117377 (2022).

    Article  CAS  Google Scholar 

  22. Hartlieb, M. Photo-iniferter RAFT polymerization. Macromol. Rapid Commun. 43, 2100514 (2022).

    Article  CAS  Google Scholar 

  23. Otsu, T. & Yoshida, M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol. Chem. Rapid Commun. 3, 127–132 (1982).

    Article  CAS  Google Scholar 

  24. McKenzie, T. G., Fu, Q., Wong, E. H. H., Dunstan, D. E. & Qiao, G. G. Visible light mediated controlled radical polymerization in the absence of exogenous radical sources or catalysts. Macromolecules 48, 3864–3872 (2015).

    Article  CAS  Google Scholar 

  25. Ding, C. et al. Photocatalyst-free and blue light-induced RAFT polymerization of vinyl acetate at ambient temperature. Macromol. Rapid Commun. 36, 2181–2185 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Allegrezza, M. L. et al. Substituent effects in iniferter photopolymerization: can bond homolysis be enhanced by electronics? Polym. Chem. 11, 6129–6133 (2020).

    Article  CAS  Google Scholar 

  27. McKenzie, T. G., Costa, L. Pd. M., Fu, Q., Dunstan, D. E. & Qiao, G. G. Investigation into the photolytic stability of RAFT agents and the implications for photopolymerization reactions. Polym. Chem. 7, 4246–4253 (2016).

    Article  CAS  Google Scholar 

  28. Nothling, M. D. et al. Progress and perspectives beyond traditional RAFT polymerization. Adv. Sci. 7, 2001656 (2020).

    Article  CAS  Google Scholar 

  29. Carmean, R. N., Becker, T. E., Sims, M. B. & Sumerlin, B. S. Ultra-high molecular weights via aqueous reversible-deactivation radical polymerization. Chem 2, 93–101 (2017).

    Article  CAS  Google Scholar 

  30. Valdebenito, A. & Encinas, M. V. Effect of solvent on the free radical polymerization of N,N-dimethylacrylamide. Polym. Int. 59, 1246–1251 (2010).

    Article  CAS  Google Scholar 

  31. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern molecular photochemistry of organic molecules. Photochem. Photobiol. 88, 1033 (2012).

    Article  Google Scholar 

  32. Shanmugam, S., Cuthbert, J., Kowalewski, T., Boyer, C. & Matyjaszewski, K. Catalyst-free selective photoactivation of RAFT polymerization: a facile route for preparation of comblike and bottlebrush polymers. Macromolecules 51, 7776–7784 (2018).

    Article  CAS  Google Scholar 

  33. Xu, J., Shanmugam, S., Corrigan, N. A. & Boyer, C. Catalyst-free visible light-induced RAFT photopolymerization. In Controlled Radical Polymerization: Mechanisms 247–267 (Symposium Series Volume 1187, American Chemical Society, 2015).

  34. Streicher, M., Boyko, V. & Blanazs, A. Ultra-high-molecular-weight, narrow-polydispersity polyacrylamides synthesized using photoiniferter polymerization to generate high-performance flocculants. ACS Appl. Mater. Interfaces 15, 59044–59054 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Lewis, R. W., Evans, R. A., Malic, N., Saito, K. & Cameron, N. R. Ultra-fast aqueous polymerisation of acrylamides by high power visible light direct photoactivation RAFT polymerisation. Polym. Chem. 9, 60–68 (2018).

    Article  CAS  Google Scholar 

  36. Plucinski, A. & Schmidt, B. V. K. J. pH sensitive water-in-water emulsions based on the pullulan and poly(N,N-dimethylacrylamide) aqueous two-phase system. Polym. Chem. 13, 4170–4177 (2022).

    Article  CAS  Google Scholar 

  37. Plucinski, A., Pavlovic, M. & Schmidt, B. V. K. J. All-aqueous multi-phase systems and emulsions formed via low-concentration ultra-high-molar mass polyacrylamides. Macromolecules 54, 5366–5375 (2021).

    Article  CAS  Google Scholar 

  38. Allison-Logan, S. et al. Highly living stars via core-first photo-RAFT polymerization: exploitation for ultra-high molecular weight star synthesis. ACS Macro Lett. 8, 1291–1295 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Hwang, C. et al. Realizing cross-linking-free acrylic pressure-sensitive adhesives with intensive chain entanglement through visible-light-mediated photoiniferter-reversible addition–fragmentation chain-transfer polymerization. ACS Appl. Mater. Interfaces 15, 58905–58916 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Whitfield, R. et al. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem. Sci. 10, 8724–8734 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin, X.-L. & An, Z.-S. Reversible addition-fragmentation chain transfer dispersity regulation by chain transfer agent micelles. Acta Polym. Sin. 55, 67–78 (2024).

    CAS  Google Scholar 

  42. Ma, Q., Qiao, G. G. & An, Z. Visible light photoiniferter polymerization for dispersity control in high molecular weight polymers. Angew. Chem. Int. Ed. 62, e202314729 (2023).

    Article  CAS  Google Scholar 

  43. Cunningham, V. J., Derry, M. J., Fielding, L. A., Musa, O. M. & Armes, S. P. RAFT aqueous dispersion polymerization of N-(2-(methacryloyloxy)ethyl)pyrrolidone: a convenient low viscosity route to high molecular weight water-soluble copolymers. Macromolecules 49, 4520–4533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McBride, R. J., Miller, J. F., Blanazs, A., Hähnle, H.-J. & Armes, S. P. Synthesis of high molecular weight water-soluble polymers as low-viscosity latex particles by RAFT aqueous dispersion polymerization in highly salty media. Macromolecules 55, 7380–7391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McBride, R. J. et al. Low-viscosity route to high-molecular-weight water-soluble polymers: exploiting the salt sensitivity of poly(N-acryloylmorpholine). Macromolecules 57, 2432–2445 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olson, R. A. et al. Inverse miniemulsion photoiniferter polymerization for the synthesis of ultrahigh molecular weight polymers. Macromolecules 55, 8451–8460 (2022).

    Article  CAS  Google Scholar 

  47. Lott, M. E. et al. Ultrahigh-molecular-weight triblock copolymers via inverse miniemulsion photoiniferter polymerization. Macromolecules 57, 4007–4015 (2024).

    Article  CAS  Google Scholar 

  48. Reis, M. H., Leibfarth, F. A. & Pitet, L. M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials. ACS Macro Lett. 9, 123–133 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Zhong, Z.-R., Chen, Y.-N., Zhou, Y. & Chen, M. Challenges and recent developments of photoflow-reversible deactivation radical polymerization (RDRP). Chin. J. Polym. Sci. 39, 1069–1083 (2021).

    Article  CAS  Google Scholar 

  50. Davidson, C. L. G. IV et al. Inverse miniemulsion enables the continuous-flow synthesis of controlled ultra-high molecular weight polymers. ACS Macro Lett. 12, 1224–1230 (2023).

    Article  PubMed  Google Scholar 

  51. Xu, J., Jung, K., Atme, A., Shanmugam, S. & Boyer, C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc. 136, 5508–5519 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Phommalysack-Lovan, J., Chu, Y., Boyer, C. & Xu, J. PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem. Commun. 54, 6591–6606 (2018).

    Article  CAS  Google Scholar 

  53. Lee, Y. Y., Boyer, C. & Kwon, M. S. Photocontrolled RAFT polymerization: past, present, and future. Chem. Soc. Rev. 52, 3035–3097 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, C. et al. Rational design of photocatalysts for controlled polymerization: effect of structures on photocatalytic activities. Chem. Rev. 122, 5476–5518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, K., Guo, X. & Chen, M. Controlled radical copolymerization toward well-defined fluoropolymers. Angew. Chem. Int. Ed. 62, e202310636 (2023).

    Article  CAS  Google Scholar 

  56. Gong, H. et al. Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation. Angew. Chem. Int. Ed. 59, 919–927 (2020).

    Article  CAS  Google Scholar 

  57. Gu, Y., Wang, Z., Gong, H. & Chen, M. Investigations into CTA-differentiation-involving polymerization of fluorous monomers: exploitation of experimental variances in fine-tuning of molecular weights. Polym. Chem. 11, 7402–7409 (2020).

    Article  CAS  Google Scholar 

  58. Zhou, C., Zhang, Z., Li, W. & Chen, M. Organocatalyzed photo-controlled synthesis of ultrahigh-molecular-weight fluorinated alternating copolymers. Angew. Chem. Int. Ed. 63, e202314483 (2024).

    Article  CAS  Google Scholar 

  59. Zhao, L., Ren, X. & Yan, X. Assembly induced super-large red-shifted absorption: the burgeoning field of organic near-infrared materials. CCS Chem. 3, 678–693 (2021).

    Article  Google Scholar 

  60. Shen, L., Lu, Q., Zhu, A., Lv, X. & An, Z. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst. ACS Macro Lett. 6, 625–631 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, Y. & An, Z. Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit[7]uril complex. Polym. Chem. 10, 2801–2811 (2019).

    Article  CAS  Google Scholar 

  62. Wang, Q. et al. Photoinduced ion-pair inner-sphere electron transfer-reversible addition–fragmentation chain transfer polymerization. J. Am. Chem. Soc. 144, 19942–19952 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. An, Z., Zhu, S. & An, Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym. Chem. 12, 2357–2373 (2021).

    Article  CAS  Google Scholar 

  64. Xia, Z. N., Shi, B. F., Zhu, W. J., Xiao, Y. & Lü, C. L. Binary hybridization strategy toward stable porphyrinic Zr-MOF encapsulated perovskites as high-performance heterogeneous photocatalysts for red to NIR light-induced PET-RAFT polymerization. Adv. Funct. Mater. 32, 2207655 (2022).

    Article  CAS  Google Scholar 

  65. Xia, Z. et al. Integrating hybrid perovskite nanocrystals into metal–organic framework as efficient S-scheme heterojunction photocatalyst for synergistically boosting controlled radical photopolymerization under 980 nm NIR light. ACS Appl. Mater. Interfaces 15, 57119–57133 (2023).

    CAS  Google Scholar 

  66. Zhang, M., Wang, L., Shu, S., Sancar, A. & Zhong, D. Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield. Science 354, 209–213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou, F., Li, R., Wang, X., Du, S. & An, Z. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase. Angew. Chem. Int. Ed. 58, 9479–9484 (2019).

    Article  CAS  Google Scholar 

  68. Li, R., Kong, W. & An, Z. Enzyme catalysis for reversible deactivation radical polymerization. Angew. Chem. Int. Ed. 61, e202202033 (2022).

    Article  CAS  Google Scholar 

  69. Li, R., Kong, W. & An, Z. Controlling radical polymerization with biocatalysts. Macromolecules 56, 751–761 (2023).

    Article  CAS  Google Scholar 

  70. Zhu, M. et al. Tyrosine residues initiated photopolymerization in living organisms. Nat. Commun. 14, 3598 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakabayashi, K. & Mori, H. Recent progress in controlled radical polymerization of N-vinyl monomers. Eur. Polym. J. 49, 2808–2838 (2013).

    Article  CAS  Google Scholar 

  72. Guinaudeau, A. et al. Facile access to poly(N-vinylpyrrolidone)-based double hydrophilic block copolymers by aqueous ambient RAFT/MADIX polymerization. Macromolecules 47, 41–50 (2014).

    Article  CAS  Google Scholar 

  73. Li, R.-Y. & An, Z.-S. Photoenzymatic RAFT emulsion polymerization with oxygen tolerance. Chin. J. Polym. Sci. 39, 1138–1145 (2021).

    Article  CAS  Google Scholar 

  74. Wang, J.-S. & Matyjaszewski, K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).

    Article  CAS  Google Scholar 

  75. Matyjaszewski, K. & Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 136, 6513–6533 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Pan, X. et al. Photomediated controlled radical polymerization. Prog. Polym. Sci. 62, 73–125 (2016).

    Article  CAS  Google Scholar 

  77. Szczepaniak, G. et al. Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chem. Sci. 13, 11540–11550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, X. et al. Red-light-driven atom transfer radical polymerization for high-throughput polymer synthesis in open air. J. Am. Chem. Soc. 145, 24315–24327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beuermann, S. & Buback, M. Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Prog. Polym. Sci. 27, 191–254 (2002).

    Article  CAS  Google Scholar 

  80. Barner-Kowollik, C. et al. Critically evaluated termination rate coefficients for free-radical polymerization: experimental methods. Prog. Polym. Sci. 30, 605–643 (2005).

    Article  CAS  Google Scholar 

  81. Rzayev, J. & Penelle, J. Controlled/living free-radical polymerization under very high pressure. Macromolecules 35, 1489–1490 (2002).

    Article  CAS  Google Scholar 

  82. Maksym, P. et al. High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity. Polymer 140, 158–166 (2018).

    Article  CAS  Google Scholar 

  83. Buback, M. & Morick, J. Equilibrium constants and activation rate coefficients for atom transfer radical polymerizations at pressures up to 2 500 bar. Macromol. Chem. Phys. 211, 2154–2161 (2010).

    Article  CAS  Google Scholar 

  84. Maksym, P. et al. Light-mediated controlled and classical polymerizations of less-activated monomers under high-pressure conditions. Polym. Chem. 12, 4418–4427 (2021).

    Article  CAS  Google Scholar 

  85. Bernat, R. et al. Visible-light-induced ATRP under high-pressure: synthesis of ultra-high-molecular-weight polymers. Chem. Commun. 60, 843–846 (2024).

    Article  CAS  Google Scholar 

  86. Yamago, S., Iida, K. & Yoshida, J.-I. Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J. Am. Chem. Soc. 124, 2874–2875 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Yamago, S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem. Rev. 109, 5051–5068 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Yamago, S., Ukai, Y., Matsumoto, A. & Nakamura, Y. Organotellurium-mediated controlled/living radical polymerization initiated by direct C–Te bond photolysis. J. Am. Chem. Soc. 131, 2100–2101 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, H. et al. NIR photocontrolled organotellurium-mediated reversible-deactivation radical polymerization by activation of C–Te bonds with organotellurium radicals. Macromolecules 57, 1182–1194 (2024).

    Article  CAS  Google Scholar 

  90. Fan, W., Tosaka, M., Yamago, S. & Cunningham, M. F. Living ab initio emulsion polymerization of methyl methacrylate in water using a water-soluble organotellurium chain transfer agent under thermal and photochemical conditions. Angew. Chem. Int. Ed. 57, 962–966 (2018).

    Article  CAS  Google Scholar 

  91. Jiang, Y., Fan, W., Tosaka, M., Cunningham, M. F. & Yamago, S. Fabrication of structurally controlled poly(n-butyl acrylate) particles by ab initio emulsion organotellurium-mediated radical polymerization. Synthesis of high molecular weight homo and block copolymers. Macromolecules 54, 10691–10699 (2021).

    Article  CAS  Google Scholar 

  92. Jiang, Y., Fan, W., Tosaka, M. & Yamago, S. Controlled synthesis of high-molecular-weight polystyrene and its block copolymers by emulsion organotellurium-mediated radical polymerization. ACS Macro Lett. 11, 1331–1335 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Trachsel, L., Konar, D., Hillman, J. D., Davidson, C. L. G. I. V. & Sumerlin, B. S. Diversification of acrylamide polymers via direct transamidation of unactivated tertiary amides. J. Am. Chem. Soc. 146, 1627–1634 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Ren, J. M. et al. Star polymers. Chem. Rev. 116, 6743–6836 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Despax, L., Fitremann, J., Destarac, M. & Harrisson, S. Low concentration thermoresponsive hydrogels from readily accessible triblock copolymers. Polym. Chem. 7, 3375–3377 (2016).

    Article  CAS  Google Scholar 

  96. Dao, V. H., Cameron, N. R. & Saito, K. Synthesis of UHMW star-shaped AB block copolymers and their flocculation efficiency in high-ionic-strength environments. Macromolecules 52, 7613–7624 (2019).

    Article  CAS  Google Scholar 

  97. Hsu, S.-Y. et al. Controlled synthesis of concentrated polymer brushes with ultralarge thickness by surface-initiated atom transfer radical polymerization under high pressure. Macromolecules 53, 132–137 (2020).

    Article  CAS  Google Scholar 

  98. Dao, V. H., Cameron, N. R. & Saito, K. Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym. Chem. 7, 11–25 (2016).

    Article  CAS  Google Scholar 

  99. Li, H., Long, J., Xu, Z. & Masliyah, J. H. Effect of molecular weight and charge density on the performance of polyacrylamide in low-grade oil sand ore processing. Can. J. Chem. Eng. 86, 177–185 (2008).

    Article  CAS  Google Scholar 

  100. Su, X. & Feng, Y. Thermoviscosifying smart polymers for oil and gas production: state of the art. ChemPhysChem 19, 1941–1955 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Shanmugam, S., Ross, G., Mbuncha, C. Y. & Santra, A. High performance-branched microgels as universal viscosifiers for water-based drilling fluids. MRS Commun. 11, 755–761 (2021).

    Article  CAS  Google Scholar 

  102. Albertsson, P. E. R. Å. Partition of proteins in liquid polymer–polymer two-phase systems. Nature 182, 709–711 (1958).

    Article  CAS  PubMed  Google Scholar 

  103. Chao, Y. & Shum, H. C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem. Soc. Rev. 49, 114–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Forciniti, D., Hall, C. K. & Kula, M. R. Influence of polymer molecular weight and temperature on phase composition in aqueous two-phase systems. Fluid Phase Equilib. 61, 243–262 (1991).

    Article  CAS  Google Scholar 

  105. Mohammad, S. A., Shingdilwar, S., Banerjee, S. & Ameduri, B. Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications. Prog. Polym. Sci. 106, 101255 (2020).

    Article  CAS  Google Scholar 

  106. He, X. et al. Adhesive tapes: from daily necessities to flexible smart electronics. Appl. Phys. Rev. 10, 011305 (2023).

    Article  CAS  Google Scholar 

  107. Mapari, S., Mestry, S. & Mhaske, S. T. Developments in pressure-sensitive adhesives: a review. Polym. Bull. 78, 4075–4108 (2021).

    Article  CAS  Google Scholar 

  108. Droesbeke, M. A., Aksakal, R., Simula, A., Asua, J. M. & Du Prez, F. E. Biobased acrylic pressure-sensitive adhesives. Prog. Polym. Sci. 117, 101396 (2021).

    Article  CAS  Google Scholar 

  109. Diodati, L. E., Wong, A. J., Lott, M. E., Carter, A. G. & Sumerlin, B. S. Unraveling the properties of ultrahigh molecular weight polyacrylates. ACS Appl. Polym. Mater. 5, 9714–9720 (2023).

    Article  CAS  Google Scholar 

  110. Wu, Z. & Boyer, C. Near-infrared light-induced reversible deactivation radical polymerization: expanding frontiers in photopolymerization. Adv. Sci. 10, 2304942 (2023).

    Article  CAS  Google Scholar 

  111. Li, R., Zhang, S., Li, Q., Qiao, G. G. & An, Z. An atom-economic enzymatic cascade catalysis for high-throughput RAFT synthesis of ultrahigh molecular weight polymers. Angew. Chem. Int. Ed. 61, e202213396 (2022).

    Article  CAS  Google Scholar 

  112. Rubens, M., Vrijsen, J. H., Laun, J. & Junkers, T. Precise polymer synthesis by autonomous self-optimizing flow reactors. Angew. Chem. Int. Ed. 58, 3183–3187 (2019).

    Article  CAS  Google Scholar 

  113. Zhou, Y., Gu, Y., Jiang, K. & Chen, M. Droplet-flow photopolymerization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries. Macromolecules 52, 5611–5617 (2019).

    Article  CAS  Google Scholar 

  114. Semsarilar, M., Jones, E. R. & Armes, S. P. Comparison of pseudo-living character of RAFT polymerizations conducted under homogeneous and heterogeneous conditions. Polym. Chem. 5, 195–203 (2014).

    Article  CAS  Google Scholar 

  115. Cornel, E. J., van Meurs, S., Smith, T., O’Hora, P. S. & Armes, S. P. In situ spectroscopic studies of highly transparent nanoparticle dispersions enable assessment of trithiocarbonate chain-end fidelity during RAFT dispersion polymerization in nonpolar media. J. Am. Chem. Soc. 140, 12980–12988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Richardson, R. A. E. et al. Low-dispersity polymers in ab initio emulsion polymerization: improved macroRAFT agent performance in heterogeneous media. Macromolecules 53, 7672–7683 (2020).

    Article  CAS  Google Scholar 

  117. Khan, M. et al. RAFT emulsion polymerization for (multi)block copolymer synthesis: overcoming the constraints of monomer order. Macromolecules 54, 736–746 (2021).

    Article  CAS  Google Scholar 

  118. Wu, Z. et al. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem. Sci. 13, 11519–11532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zetterlund, P. B. & Perrier, S. RAFT polymerization under microwave irradiation: toward mechanistic understanding. Macromolecules 44, 1340–1346 (2011).

    Article  CAS  Google Scholar 

  120. Perry, S. L. & Sing, C. E. 100th anniversary of macromolecular science viewpoint: opportunities in the physics of sequence-defined polymers. ACS Macro Lett. 9, 216–225 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Teator, A. J., Varner, T. P., Knutson, P. C., Sorensen, C. C. & Leibfarth, F. A. 100th anniversary of macromolecular science viewpoint: the past, present, and future of stereocontrolled vinyl polymerization. ACS Macro Lett. 9, 1638–1654 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Shanmugam, S. & Boyer, C. Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Wu, Z., Peng, C.-H. & Fu, X. Tacticity control approached by visible-light induced organocobalt-mediated radical polymerization: the synthesis of crystalline poly(N,N-dimethylacrylamide) with high isotacticity. Polym. Chem. 11, 4387–4395 (2020).

    Article  CAS  Google Scholar 

  124. Imamura, Y., Fujita, T., Kobayashi, Y. & Yamago, S. Tacticity, molecular weight, and temporal control by lanthanide triflate-catalyzed stereoselective radical polymerization of acrylamides with an organotellurium chain transfer agent. Polym. Chem. 11, 7042–7049 (2020).

    Article  CAS  Google Scholar 

  125. Cai, B., Zhang, S. & Zhou, Y. Green stereoregular polymerization of poly(methyl methacrylate)s through vesicular catalysis. CCS Chem. 4, 1337–1346 (2022).

    Article  CAS  Google Scholar 

  126. Zhang, X., Lin, F., Cao, M. & Zhong, M. Rare earth–cobalt bimetallic catalysis mediates stereocontrolled living radical polymerization of acrylamides. Nat. Synth. 2, 855–863 (2023).

    Article  CAS  Google Scholar 

  127. Martinez, M. R. & Matyjaszewski, K. Degradable and recyclable polymers by reversible deactivation radical polymerization. CCS Chem. 4, 2176–2211 (2022).

    Article  CAS  Google Scholar 

  128. Qin, B. & Zhang, X. On depolymerization. CCS Chem. 6, 297–312 (2024).

    Article  CAS  Google Scholar 

  129. Zhang, S., Li, R. & An, Z. Degradable block copolymer nanoparticles synthesized by polymerization-induced self-assembly. Angew. Chem. Int. Ed. 63, e202315849 (2024).

    Article  CAS  Google Scholar 

  130. Tardy, A., Nicolas, J., Gigmes, D., Lefay, C. & Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem. Rev. 117, 1319–1406 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Jones, G. R. et al. Reversed controlled polymerization (RCP): depolymerization from well-defined polymers to monomers. J. Am. Chem. Soc. 145, 9898–9915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Martinez, M. R., Dadashi-Silab, S., Lorandi, F., Zhao, Y. & Matyjaszewski, K. Depolymerization of P(PDMS11MA) bottlebrushes via atom transfer radical polymerization with activator regeneration. Macromolecules 54, 5526–5538 (2021).

    Article  CAS  Google Scholar 

  133. Wang, H. S., Truong, N. P., Pei, Z., Coote, M. L. & Anastasaki, A. Reversing RAFT polymerization: near-quantitative monomer generation via a catalyst-free depolymerization approach. J. Am. Chem. Soc. 144, 4678–4684 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Whitfield, R., Jones, G. R., Truong, N. P., Manring, L. E. & Anastasaki, A. Solvent-free chemical recycling of polymethacrylates made by ATRP and RAFT polymerization: high-yielding depolymerization at low temperatures. Angew. Chem. Int. Ed. 62, e202309116 (2023).

    Article  CAS  Google Scholar 

  135. Hughes, R. W. et al. Bulk depolymerization of methacrylate polymers via pendent group activation. J. Am. Chem. Soc. 146, 6217–6224 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (22193020, 22193024 and 22371089) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., W.K., S.L., A.S. and Z.A. wrote the manuscript. S.P.A. and Z.A. revised the manuscript.

Corresponding author

Correspondence to Zesheng An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Kong, W., Lian, S. et al. Photocontrolled radical polymerization for the synthesis of ultrahigh-molecular-weight polymers. Nat. Synth 4, 15–30 (2025). https://doi.org/10.1038/s44160-024-00710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00710-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing