Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanically interlocked polymer scaffolds enable high-efficiency printed flexible perovskite photovoltaics

Abstract

Flexible perovskite solar cells achieve efficient bendable energy conversion, enabling next-generation wearable devices. However, the transition from laboratory-scale prototypes to industrial-scale modules is impeded by the non-uniform deposition of perovskite colloidal particles during printing, resulting in diminished power conversion efficiency. Inspired by biological interlocking mechanisms, we synthesized mechanically interlocked networks embedded in perovskite precursor inks, to construct a three-dimensional network that immobilizes perovskite colloidal particles, suppressing aggregation during printing. The dynamic network enables uniform co-deposition of perovskite colloidal particles under shear-induced flow, yielding high-quality crystalline films with enhanced optoelectronic properties. Flexible perovskite solar cells fabricated using mechanically interlocked network-doped precursor ink exhibit superior performance, achieving record power conversion efficiencies of 26.22% for small devices (0.10 cm2) and 19.44% for larger modules (100 cm2), alongside substantial improvements in long-term operational stability and mechanical robustness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction mechanism between MINs and MNs with perovskite.
Fig. 2: The mitigation mechanism of the uniform deposition of perovskite colloidal particles in the substrate.
Fig. 3: Crystallization behaviour analysis of the evolution from precursor ink to solid film on a flexible substrate of the reference perovskite ink and the MIN-doped perovskite ink.
Fig. 4: Uniform crystallization and residual stress release in flexible perovskite films.
Fig. 5: Photovoltaic performance and operational stability of flexible perovskite solar devices.

Similar content being viewed by others

Data availability

All the data in the paper were derived from our group experiment and are therefore available. These data are published alongside the paper. Source data are available with this paper.

References

  1. Tong, X. et al. Large orientation angle buried substrate enables efficient flexible perovskite solar cells and modules. Adv. Mater. 36, 2407032 (2024).

    Article  CAS  Google Scholar 

  2. Liu, P. et al. Ambient scalable fabrication of high-performance flexible perovskite solar cells. Energy Environ. Sci. 17, 7069–7080 (2024).

    Article  CAS  Google Scholar 

  3. Hu, Y. et al. Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives. ACS Energy Lett. 6, 2917–2943 (2021).

    Article  CAS  Google Scholar 

  4. Hailegnaw, B. et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy 9, 677–690 (2024).

    Article  CAS  Google Scholar 

  5. Xu, W. et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photon. 18, 379–387 (2024).

    Article  CAS  Google Scholar 

  6. Chu, Z. et al. Synergistic macroscopic–microscopic regulation: dual constraints of the island effect and coffee-ring effect in printing efficient flexible perovskite photovoltaics. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202424191 (2025).

  7. Liu, K. et al. Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells. Joule 4, 2404–2425 (2020).

    Article  CAS  Google Scholar 

  8. Chen, H. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Pu, D. et al. Enhancing efficiency and intrinsic stability of large-area blade-coated wide-bandgap perovskite solar cells through strain release. Adv. Funct. Mater. 34, 2314349 (2024).

    Article  CAS  Google Scholar 

  10. Park, N. G. et al. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  CAS  Google Scholar 

  11. Jung, M. et al. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X. et al. Crystallization control via ligand–perovskite coordination for high-performance flexible perovskite solar cells. Energy Environ. Sci. 17, 6256–6267 (2024).

    Article  CAS  Google Scholar 

  13. Gong, C. et al. An equalized flow velocity strategy for perovskite colloidal particles in flexible perovskite solar cells. Adv. Mater. 36, 2405572 (2024).

    Article  CAS  Google Scholar 

  14. Xu, Y. et al. Multifunctional ionic liquid to extend the expiration date of precursor solution for perovskite photovoltaics. Sci. China Mater. 67, 3658–3665 (2024).

    Article  CAS  Google Scholar 

  15. Graziano, G. A controlled attraction. Nat. Rev. Chem. 4, 273–273 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Yu, X. et al. “Coffee ring” controlment in spray prepared >19% efficiency Cs0.19FA0.81PbI2.5Br0.5 perovskite solar cells. J. Energy Chem. 67, 201–208 (2022).

  17. Wu, Y. et al. In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7, 398–415 (2023).

    Article  CAS  Google Scholar 

  18. Zhu, Z. et al. Correlating the perovskite/polymer multi-mode reactions with deep-level traps in perovskite solar cells. Joule 6, 2849–2868 (2022).

    Article  CAS  Google Scholar 

  19. Gong, C. et al. Printing-induced alignment network design of polymer matrix for stretchable perovskite solar cells with over 20% efficiency. Adv. Funct. Mater. 33, 2301043 (2023).

    Article  CAS  Google Scholar 

  20. Han, T. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang, Y. et al. All electrospray printed perovskite solar cells. Nano Energy 53, 440–448 (2018).

    Article  CAS  Google Scholar 

  22. Meng, X. et al. Stretchable perovskite solar cells with recoverable performance. Angew. Chem. Int. Ed. 59, 16602–16608 (2020).

    Article  CAS  Google Scholar 

  23. Zhao, J. et al. Mechanically interlocked vitrimers. J. Am. Chem. Soc. 144, 872–882 (2021).

    Article  PubMed  Google Scholar 

  24. Zhao, D. et al. A mortise-and-tenon joint inspired mechanically interlocked network. Angew. Chem. Int. Ed. 60, 16224–16229 (2021).

    Article  CAS  Google Scholar 

  25. Li, M. et al. Monolithically-grained perovskite solar cell with mortise–tenon structure for charge extraction balance. Nat. Commun. 14, 3216 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, X. et al. Perovskite solution aging: what happened and how to inhibit? Chem 6, 1369–1378 (2020).

    Article  CAS  Google Scholar 

  27. Li, Z. et al. Boosting mechanical durability under high humidity by bioinspired multisite polymer for high-efficiency flexible perovskite solar cells. Nat. Commun. 16, 1771 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, L. et al. In-situ polymer framework strategy enabling printable and efficient perovskite solar cells by mitigating “coffee ring” effect. Adv. Mater. 36, 2310752 (2024).

    Article  CAS  Google Scholar 

  29. Gong, C. et al. An enhanced Couette flow printing strategy to recover efficiency losses by area and substrate differences in perovskite solar cells. Energy Environ. Sci. 15, 4313–4322 (2022).

    Article  CAS  Google Scholar 

  30. Fan, B. et al. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater. 34, 2201840 (2022).

    Article  CAS  Google Scholar 

  31. Yin, X. et al. Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy Environ. Sci. 16, 4251–4279 (2023).

    Article  CAS  Google Scholar 

  32. Agresti, A. et al. Scalable deposition techniques for large-area perovskite photovoltaic technology: a multi-perspective review. Nano Energy 122, 109317 (2024).

    Article  CAS  Google Scholar 

  33. Wu, Y. et al. Stereoscopic polymer network for developing mechanically robust flexible perovskite solar cells with an efficiency approaching 25%. Adv. Mater. 36, 2403531 (2024).

    Article  CAS  Google Scholar 

  34. Xue, T. et al. Self-healing ion-conducting elastomer towards record efficient flexible perovskite solar cells with excellent recoverable mechanical stability. Energy Environ. Sci. 17, 2621–2630 (2024).

    Article  CAS  Google Scholar 

  35. Dunlap-Shohl, W. A. et al. Synthetic approaches for halide perovskite thin films. Chem. Rev. 119, 3193–3295 (2018).

    Article  PubMed  Google Scholar 

  36. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y. et al. Utilizing electrostatic dynamic bonds in zwitterion elastomer for self-curing of flexible perovskite solar cells. Joule 8, 1120–1141 (2024).

    Article  CAS  Google Scholar 

  38. Li, W. et al. Electrostatic assembly strategy for printing inorganic nanoparticles and its application in large-area perovskite solar cells. Sci. China Mater. 67, 1602–1611 (2024).

    Article  CAS  Google Scholar 

  39. Xing, Z. et al. Multi-environment phase stabilization by lattice reinforcement for efficient perovskite solar cells. Sci. China Mater. 66, 2573–2581 (2023).

    Article  CAS  Google Scholar 

  40. Feng, J. et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30, 1801418 (2018).

    Article  Google Scholar 

  41. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Article  CAS  Google Scholar 

  42. Shi, P. et al. Strain regulates the photovoltaic performance of thick-film perovskites. Nat. Commun. 15, 2579 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ding, Y. et al. Stress regulation via surface micro-etching and reconstruction for enhancing triple-cation perovskite solar cells with an efficiency of 25.54%. Energy Environ. Sci. 17, 9268–9277 (2024).

    Article  CAS  Google Scholar 

  44. Meng, X. et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ge, Y. et al. Suppressing wide-angle light loss and non-radiative recombination for efficient perovskite solar cells. Nat. Photon. 19, 170–177 (2025).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.C. thanks the National Key Research and Development Program of China (2024YFF1401100). X.H. thanks the National Natural Science Foundation of China (NSFC) (52222312, 52173169, 22461142139), the Natural Science Foundation of Jiangxi Province (20242BAB24002, 20224ACB204007), Nanchang University Interdisciplinary Research Funding Program (202505300006), and the Shenzhen Science and Technology Program (JCYJ20241202124937050). X.Y. thanks the NSFC (22525106). B.F. thanks the NSFC (52403323) and the China Postdoctoral Science Foundation (2024M751238). GIWAXS was conducted at beamline BL16B1 at the Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and X.H. conceived of and designed the experiment. S.S., C.G., M.T., B.F. and H.Y. fabricated and characterized the various photoelectric properties of the perovskite solar cells and films. S.S., C.W. and C.G. measured ink rheological properties and analysed the printing dynamic evolution. H.H. and M.B.K.N. analysed the perovskite film performance. X.Y. provided the materials for the experiments. All authors contributed to the data analysis, discussed the results and commented on the paper.

Corresponding authors

Correspondence to Xuzhou Yan, Xiaotian Hu or Yiwang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Renjun Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–45 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Statistical source data.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Gong, C., Tao, M. et al. Mechanically interlocked polymer scaffolds enable high-efficiency printed flexible perovskite photovoltaics. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-025-00904-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing