Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chronic inflammation and vascular cell plasticity in atherosclerosis

Abstract

Vascular smooth muscle cells, endothelial cells and macrophages undergo phenotypic conversions throughout atherosclerosis progression, both as a consequence of chronic inflammation and as subsequent drivers of it. The inflammatory hypothesis of atherosclerosis has been catapulted to the forefront of cardiovascular research as clinical trials have shown that anti-inflammatory therapy reduces adverse cardiovascular events. However, no current therapies have been specifically designed to target the phenotype of plaque cells. Fate mapping has revealed that plaque cells convert to detrimental and beneficial cell phenotypes during atherosclerosis, with cumulative evidence highlighting that vascular cell plasticity is intimately linked with plaque inflammation, ultimately impacting lesion stability. Here we review vascular cell plasticity during atherosclerosis in the context of the chronic inflammatory plaque microenvironment. We highlight the need to better understand how plaque cells behave during therapeutic intervention. We then propose modulating plaque cell phenotype as an unexplored therapeutic paradigm in the clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical timeline of key discoveries in studies investigating inflammation and vascular cell plasticity in atherosclerosis.
Fig. 2: Inflammation and vascular cell plasticity during atherosclerosis progression.
Fig. 3: Vascular cell plasticity is affected by some therapeutic treatments.
Fig. 4: Potential therapeutic strategies for resolving inflammation and improving the vascular cell phenotype in atherosclerosis.

Similar content being viewed by others

References

  1. GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2100–2132 (2024).

    Article  Google Scholar 

  2. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2133–2161 (2024).

    Article  Google Scholar 

  3. GBD 2021 Forecasting Collaborators.Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet 403, 2204–2256 (2024).

    Article  Google Scholar 

  4. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Ridker, P. M. How common is residual inflammatory risk? Circ. Res. 120, 617–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Ridker, P. M. et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet 401, 1293–1301 (2023). This study suggests that residual inflammatory risk predicts adverse cardiovascular events among individuals receiving statin therapy.

    Article  CAS  PubMed  Google Scholar 

  7. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). This clinical trial provided proof of principle that anti-inflammatory therapy can improve cardiovascular outcomes independently of lipid lowering.

    Article  CAS  PubMed  Google Scholar 

  8. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019). This study showed that colchicine reduces adverse cardiovascular events in patients with myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  9. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020). This study demonstrated that colchicine reduces adverse cardiovascular events in patients with stable coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  10. Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 117, 2525–2536 (2021). This review summarizes the role of inflammation in atherosclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fiolet, A. T. L. et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur. Heart J. 42, 2765–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J. et al. Colchicine in patients with acute ischaemic stroke or transient ischaemic attack (CHANCE-3): multicentre, double blind, randomised, placebo controlled trial. Br. Med. J. 385, e079061 (2024).

    Article  Google Scholar 

  13. Kelly, P. et al. Long-term colchicine for the prevention of vascular recurrent events in non-cardioembolic stroke (CONVINCE): a randomised controlled trial. Lancet 404, 125–133 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013). This paper showed that colchicine suppresses NLRP3 inflammasome activation via microtubule destabilization.

    Article  CAS  PubMed  Google Scholar 

  15. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Libby, P. Interleukin-1β as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol. 70, 2278–2289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Opstal, T. S. J. et al. Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease. Circulation 142, 1996–1998 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Vaidya, K. et al. Colchicine inhibits neutrophil extracellular trap formation in patients with acute coronary syndrome after percutaneous coronary intervention. J. Am. Heart Assoc. 10, e018993 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Schwarz, N. et al. Colchicine exerts anti-atherosclerotic and ‑plaque-stabilizing effects targeting foam cell formation. FASEB J. 37, e22846 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Li, W. et al. Colchicine promotes atherosclerotic plaque stability independently of inflammation. Preprint at bioRxiv https://doi.org/10.1101/2023.10.03.560632 (2023).

  21. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Micha, R. et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am. J. Cardiol. 108, 1362–1370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice—brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  PubMed  Google Scholar 

  24. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Menu, P. et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, A. et al. Clonal expansion in cardiovascular pathology. JACC Basic Transl. Sci. 9, 120–144 (2024).

    Article  PubMed  Google Scholar 

  27. Misra, A. et al. Integrin β3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat. Commun. 9, 2073 (2018). This study showed how VSMCs clonally expand during atherosclerotic plaque development.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Betsholtz, C. Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev. 15, 215–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Newman, A. A. C. et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat. Metab. 3, 166–181 (2021). This paper showed that the protective fibrous cap is formed from multiple cell sources.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kwartler, C. S. et al. Nuclear smooth muscle α-actin participates in vascular smooth muscle cell differentiation. Nat. Cardiovasc. Res. 2, 937–955 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo, D. C. et al. Mutations in smooth muscle α-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84, 617–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaw, K. et al. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells. Eur. Heart J. 44, 2713–2726 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020). This research identified a stem cell-like transitional phenotype during smooth muscle cell transdifferentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alencar, G. F. et al. Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation 142, 2045–2059 (2020). This study showed that multiple smooth muscle cell-derived phenotypes arise via a transitional stem cell-like phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, P. Y. et al. Smooth muscle cell reprogramming in aortic aneurysms. Cell Stem Cell 26, 542–557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng, P. et al. Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque. Nat. Cardiovasc. Res. 1, 322–333 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rattazzi, M. et al. Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells. Arterioscler. Thromb. Vasc. Biol. 25, 1420–1425 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kawai, K., Kawakami, R., Finn, A. V. & Virmani, R. Differences in stable and unstable atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 44, 1474–1484 (2024). This review summarizes key pathological differences between stable and unstable plaques.

    Article  CAS  PubMed  Google Scholar 

  40. Rong, J. X., Shapiro, M., Trogan, E. & Fisher, E. A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl Acad. Sci. USA 100, 13531–13536 (2003). This study showed that VSMCs can express macrophage-related genes in response to cholesterol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145–myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conklin, A. C. et al. Meta-analysis of smooth muscle lineage transcriptomes in atherosclerosis and their relationships to in vitro models. Immunometabolism https://doi.org/10.20900/immunometab20210022 (2021).

  43. Li, Y. et al. Smooth muscle-derived macrophage-like cells contribute to multiple cell lineages in the atherosclerotic plaque. Cell Discov. 7, 111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nagesh, P. T. et al. HDL regulates TGFβ-receptor lipid raft partitioning, restoring contractile features of cholesterol-loaded vascular smooth muscle cells. Preprint at bioRxiv https://doi.org/10.1101/2023.10.19.562786 (2023).

  45. Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & Francis, G. A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129, 1551–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y. et al. Smooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 39, 876–887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, J., Kitchen, C. M., Streb, J. W. & Miano, J. M. Myocardin: a component of a molecular switch for smooth muscle differentiation. J. Mol. Cell. Cardiol. 34, 1345–1356 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Y. et al. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem. 280, 9719–9727 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015). This study established the importance of VSMC plasticity in atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pekayvaz, K. et al. Mural cell-derived chemokines provide a protective niche to safeguard vascular macrophages and limit chronic inflammation. Immunity 56, 2325–2341 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farina, F. M. et al. The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell–monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway. Eur. Heart J. 43, 4562–4576 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor deficient mice. Mol. Cell 2, 275–281 (1998). This study established the importance of CCL2 in monocyte recruitment.

    Article  CAS  PubMed  Google Scholar 

  53. Owsiany, K. M., Deaton, R. A., Soohoo, K. G., Tram Nguyen, A. & Owens, G. K. Dichotomous roles of smooth muscle cell-derived MCP1 (monocyte chemoattractant protein 1) in development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 942–956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gräbner, R. et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42, 1100–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alexander, M. R., Murgai, M., Moehle, C. W. & Owens, G. K. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol. Genomics 44, 417–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eun, S. Y., Ko, Y. S., Park, S. W., Chang, K. C. & Kim, H. J. IL-1β enhances vascular smooth muscle cell proliferation and migration via P2Y2 receptor-mediated RAGE expression and HMGB1 release. Vasc. Pharmacol. 72, 108–117 (2015).

    Article  CAS  Google Scholar 

  58. Kabir, I. et al. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nat. Aging 3, 64–81 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gomez, D. et al. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med. 24, 1418–1429 (2018). This study suggested that IL-1β has a protective role in plaque VSMC derivatives.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karnewar, S. et al. IL-1β inhibition partially negates the beneficial effects of diet-induced atherosclerosis regression in mice. Arterioscler. Thromb. Vasc. Biol. 44, 1379–1392 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Fidler, T. P. et al. Suppression of IL-1β promotes beneficial accumulation of fibroblast-like cells in atherosclerotic plaques in clonal hematopoiesis. Nat. Cardiovasc. Res. 3, 60–75 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ma, S., Yang, D., Li, D., Tang, B. & Yang, Y. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36. Lipids Health Dis. 10, 53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carramolino, L. et al. Cholesterol lowering depletes atherosclerotic lesions of smooth muscle cell-derived fibromyocytes and chondromyocytes. Nat. Cardiovasc. Res. 3, 203–220 (2024).

    Article  PubMed  Google Scholar 

  65. Sharma, D. et al. Comprehensive integration of multiple single-cell transcriptomic data sets defines distinct cell populations and their phenotypic changes in murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 44, 391–408 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hume, D. A., Millard, S. M. & Pettit, A. R. Macrophage heterogeneity in the single-cell era: facts and artifacts. Blood 142, 1339–1347 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Piollet, M. et al. TREM2 protects from atherosclerosis by limiting necrotic core formation. Nat. Cardiovasc. Res. 3, 269–282 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adkar, S. S. & Leeper, N. J. Efferocytosis in atherosclerosis. Nat. Rev. Cardiol. 21, 762–779 (2024).

    Article  PubMed  Google Scholar 

  70. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Flores, A. M. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jarr, K.-U. et al. Effect of CD47 blockade on vascular inflammation. N. Engl. J. Med. 384, 382–383 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ceneri, N. et al. Rac2 modulates atherosclerotic calcification by regulating macrophage interleukin-1β production. Arterioscler. Thromb. Vasc. Biol. 37, 328–340 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Shao, J. et al. Regulation of macrophage polarization by mineralized collagen coating to accelerate the osteogenic differentiation of mesenchymal stem cells. ACS Biomater. Sci. Eng. 8, 610–619 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Loi, F. et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res. Ther. 7, 15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sun, Y. et al. Smooth muscle cell-specific Runx2 deficiency inhibits vascular calcification. Circ. Res. 111, 543–552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Byon, C. H. et al. Runx2-upregulated receptor activator of nuclear factor κB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler. Thromb. Vasc. Biol. 31, 1387–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. & Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18, 842–851 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Hernandez, G. E. et al. Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. Nat. Cardiovasc. Res. 1, 67–84 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hashimoto, K., Kataoka, N., Nakamura, E., Tsujioka, K. & Kajiya, F. Oxidized LDL specifically promotes the initiation of monocyte invasion during transendothelial migration with upregulated PECAM-1 and downregulated VE-cadherin on endothelial junctions. Atherosclerosis 194, e9–e17 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Valente, A. J., Irimpen, A. M., Siebenlist, U. & Chandrasekar, B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic. Biol. Med. 70, 117–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mollace, V. et al. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: role of oxidative stress and LOX-1 receptor expression. Int. J. Cardiol. 184, 152–158 (2015).

    Article  PubMed  Google Scholar 

  84. Cushing, S. D. et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl Acad. Sci. USA 87, 5134–5138 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, D. & Mehta, J. L. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 101, 2889–2895 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Smalley, D. M. et al. Native LDL increases endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol. 16, 585–590 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Takei, A., Huang, Y. & Lopes-Virella, M. F. Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein: influences of degree of oxidation and location of oxidized LDL. Atherosclerosis 154, 79–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Apostolov, E. O., Shah, S. V., Ok, E. & Basnakian, A. G. Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol. 27, 826–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Toma, L., Sanda, G. M., Deleanu, M., Stancu, C. S. & Sima, A. V. Glycated LDL increase VCAM-1 expression and secretion in endothelial cells and promote monocyte adhesion through mechanisms involving endoplasmic reticulum stress. Mol. Cell. Biochem. 417, 169–179 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Georgakis, M. K., Bernhagen, J., Heitman, L. H., Weber, C. & Dichgans, M. Targeting the CCL2–CCR2 axis for atheroprotection. Eur. Heart J. 43, 1799–1808 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Pickett, J. R., Wu, Y., Zacchi, L. F. & Ta, H. T. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc. Res. 119, 2278–2293 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, P.-Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015). This paper showed that the endothelial to mesenchymal transition drives inflammation and atherosclerotic plaque burden.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, P.-Y. et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 1, 912–926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, Y.-C. et al. A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ. Res. 113, 252–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Andueza, A. et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. https://doi.org/10.1016/j.celrep.2020.108491 (2020).

  97. Ivan, L. & Antohe, F. Hyperlipidemia induces endothelial-derived foam cells in culture. J. Recept. Signal Transduct. 30, 106–114 (2010).

    Article  CAS  Google Scholar 

  98. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yao, Y. et al. A role for the endothelium in vascular calcification. Circ. Res. 113, 495–504 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Yao, J. et al. Serine protease activation essential for endothelial–mesenchymal transition in vascular calcification. Circ. Res. 117, 758–769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat. Med. 16, 1400–1406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yung, L. M., Sánchez-Duffhues, G., Ten Dijke, P. & Yu, P. B. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc. Res. 108, 278–287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sánchez-Duffhues, G. et al. Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J. Pathol. 247, 333–346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Boström, K. I., Yao, J., Guihard, P. J., Blazquez-Medela, A. M. & Yao, Y. Endothelial–mesenchymal transition in atherosclerotic lesion calcification. Atherosclerosis 253, 124–127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Liang, G. et al. Tenascin-X mediates flow-induced suppression of EndMT and atherosclerosis. Circ. Res. 130, 1647–1659 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Santovito, D. et al. Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Sci. Transl. Med. 12, eaaz2294 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Takagaki, Y. et al. Endothelial autophagy deficiency induces IL6-dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 16, 1905–1914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Singh, K. K. et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J. Biol. Chem. 290, 2547–2559 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Helmke, A. et al. Endothelial-to-mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. FASEB J. 33, 2278–2289 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Woo, K. V. et al. Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. J. Clin. Invest. https://doi.org/10.1172/JCI141467 (2021).

  111. Chen, P. Y. et al. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2, 1684–1696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fu, Z. et al. Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1. Am. J. Physiol. Cell Physiol. 313, C567–C574 (2017).

    Article  PubMed  Google Scholar 

  113. Chen, P. Y., Schwartz, M. A. & Simons, M. Endothelial-to-mesenchymal transition, vascular inflammation, and atherosclerosis. Front. Cardiovasc. Med. 7, 53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haynes, B. A. et al. Endothelial-to-mesenchymal transition in human adipose tissue vasculature alters the particulate secretome and induces endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 39, 2168–2191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Swirski, F. K. et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl Acad. Sci. USA 103, 10340–10345 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Williams, J. W. et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 21, 1194–1204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gerhardt, T. & Ley, K. Monocyte trafficking across the vessel wall. Cardiovasc. Res. 107, 321–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013). This review summarizes the role of macrophages throughout atherogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bäck, M., Yurdagul, A. Jr., Tabas, I., Öörni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020). This scRNA-seq meta-analysis highlighted the transcriptional heterogeneity of macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010). This study demonstrated the importance of the NLRP3 inflammasome during atherogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Patterson, M. T. et al. Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. Nat. Cardiovasc. Res. 2, 1015–1031 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Barrett, T. J. Macrophages in atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 40, 20–33 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Oesterle, A., Laufs, U. & Liao, J. K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 120, 229–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, C. et al. Statins improve endothelial function via suppression of epigenetic-driven EndMT. Nat. Cardiovasc. Res. 2, 467–485 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Miano, J. M. & Berk, B. C. Retinoids: versatile biological response modifiers of vascular smooth muscle phenotype. Circ. Res. 87, 355–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, B. et al. All-trans-retinoic acid ameliorated high fat diet-induced atherosclerosis in rabbits by inhibiting platelet activation and inflammation. J. Biomed. Biotechnol. 2012, 259693 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wu, Y. et al. ATRA improves endothelial dysfunction in atherosclerotic rabbits by decreasing CAV‑1 expression and enhancing eNOS activity. Mol. Med. Rep. 17, 6796–6802 (2018).

  136. Huize, P. et al. Retinoic acid signaling modulates smooth muscle cell phenotypic switching in atherosclerosis through epigenetic regulation of gene expression. Preprint at bioRxiv https://doi.org/10.1101/2022.11.09.515888 (2022).

  137. Langlois, M., Duprez, D., Delanghe, J., De Buyzere, M. & Clement, D. L. Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation 103, 1863–1868 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Nakata, Y. & Maeda, N. Vulnerable atherosclerotic plaque morphology in apolipoprotein E-deficient mice unable to make ascorbic acid. Circulation 105, 1485–1490 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Gokce, N. et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 99, 3234–3240 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Arakawa, E. et al. l-Ascorbic acid stimulates expression of smooth muscle-specific markers in smooth muscle cells both in vitro and in vivo. J. Cardiovasc. Pharmacol. 42, 745–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Pakala, R., Stabile, E., Jang, G. J., Clavijo, L. & Waksman, R. Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: inhibitory effect on monocyte chemotaxis. J. Cardiovasc. Pharmacol. 46, 481–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Castro, C. et al. Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27 Kip1-independent pathway. Atherosclerosis 172, 31–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Liu, X., Tang, Y., Cui, Y., Zhang, H. & Zhang, D. Autophagy is associated with cell fate in the process of macrophage-derived foam cells formation and progress. J. Biomed. Sci. 23, 57 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Varghese, Z., Fernando, R., Moorhead, J. F., Powis, S. H. & Ruan, X. Z. Effects of sirolimus on mesangial cell cholesterol homeostasis: a novel mechanism for its action against lipid-mediated injury in renal allografts. Am. J. Physiol. Renal Physiol. 289, F43–48, (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, R. et al. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation 128, 2047–2057 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Liu, M. et al. H3K4 di-methylation governs smooth muscle lineage identity and promotes vascular homeostasis by restraining plasticity. Dev. Cell 56, 2765–2782 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, W. Q. et al. Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels. Br. J. Pharmacol. 156, 941–951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Luo, Z. et al. Moderate autophagy inhibits vascular smooth muscle cell senescence to stabilize progressed atherosclerotic plaque via the mTORC1/ULK1/ATG13 signal pathway. Oxid. Med. Cell. Longev. 2017, 3018190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mehlen, P. et al. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature 395, 801–804 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Llambi, F., Causeret, F., Bloch‐Gallego, E. & Mehlen, P. Netrin‐1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J. 20, 2715–2722 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lengrand, J. et al. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature 620, 402–408 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cassier, P. A. et al. Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature 620, 409–416 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Schlegel, M. et al. Silencing myeloid netrin-1 induces inflammation resolution and plaque regression. Circ. Res. 129, 530–546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wawruszak, A. et al. Histone deacetylase inhibitors and phenotypical transformation of cancer cells. Cancers https://doi.org/10.3390/cancers11020148 (2019).

  156. Lecce, L. et al. Histone deacetylase 9 promotes endothelial–mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. J. Clin. Invest. 131, e131178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cao, Q. et al. Histone deacetylase 9 represses cholesterol efflux and alternatively activated macrophages in atherosclerosis development. Arterioscler. Thromb. Vasc. Biol. 34, 1871–1879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yoshida, T., Gan, Q., Shang, Y. & Owens, G. K. Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am. J. Physiol. Cell Physiol. 292, C886–C895 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Zhang, M. et al. HDAC6 regulates the MRTF-A/SRF axis and vascular smooth muscle cell plasticity. JACC Basic Transl. Sci. 3, 782–795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Teixeira, A. F., Ten Dijke, P. & Zhu, H. J. On-target anti-TGF-β therapies are not succeeding in clinical cancer treatments: what are remaining challenges? Front. Cell Dev. Biol. 8, 605 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Patel, A. P., Wang, M., Kartoun, U., Ng, K. & Khera, A. V. Quantifying and understanding the higher risk of atherosclerotic cardiovascular disease among South Asian individuals. Circulation 144, 410–422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Warmbrunn, M. V. et al. Networks of gut bacteria relate to cardiovascular disease in a multi-ethnic population: the HELIUS study. Cardiovasc. Res. 120, 372–384 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Shen, X. et al. Gut microbiota and atherosclerosis-focusing on the plaque stability. Front. Cardiovasc. Med. 8, 668532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Seldin, M. M. et al. Trimethylamine N‐oxide promotes vascular inflammation through signaling of mitogen‐activated protein kinase and nuclear factor‐κB. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.115.002767 (2016).

  167. Sharma, N. et al. Myeloid Krüppel-like factor 4 deficiency augments atherogenesis in ApoE−/− mice—brief report. Arterioscler. Thromb. Vasc. Biol. 32, 2836–2838 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chin, D. D. et al. Long-term, in vivo therapeutic effects of a single dose of miR-145 micelles for atherosclerosis. Bioact. Mater. 27, 327–336 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Chin, D. D. et al. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials 273, 120810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Deloukas, P. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet. 45, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Döring, Y. et al. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation 136, 388–403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cimen, I. et al. Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.adf3357 (2023).

  174. Virchow, R. C. Cellular Pathology. As based upon Physiological and Pathological History [Translated from the 2nd edn of the original by Chance, F.] (John Churchill, 1860).

  175. Anitschkow, N. Uber die veranderungen der kaninchenaorta bei experimenteller cholesterinsteatase. Beitr. Pathol. Anat. 56, 379–404 (1913).

    Google Scholar 

  176. Poole, J. C. & Florey, H. W. Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits. J. Pathol. Bacteriol. 75, 245–251 (1958).

    Article  CAS  PubMed  Google Scholar 

  177. Ross, R. & Glomset, J. A. Atherosclerosis and the arterial smooth muscle cell. Science 180, 1332–1339 (1973).

    Article  CAS  PubMed  Google Scholar 

  178. Jonasson, L., Holm, J., Skalli, O., Bondjers, G. & Hansson, G. K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6, 131–138 (1986).

    Article  CAS  PubMed  Google Scholar 

  179. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Altschul, R. Selected Studies on Arteriosclerosis (Charles C. Thomas, 1950).

  182. Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circulation Res. 115, 662–667 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.M. is supported by a Heart Foundation Vanguard grant (NHF1017) and a New South Wales Cardiovascular Research Capacity Program grant (DOH1024). E.A.F. is supported by a National Heart, Lung and Blood Institute grant (National Institutes of Health R01HL084312). A.L. is supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

A.L. drafted the manuscript with input from J.M.M., E.A.F. and A.M. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Ashish Misra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Jason Kovacic, Nathan Palpant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A., Miano, J.M., Fisher, E.A. et al. Chronic inflammation and vascular cell plasticity in atherosclerosis. Nat Cardiovasc Res 3, 1408–1423 (2024). https://doi.org/10.1038/s44161-024-00569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44161-024-00569-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing