Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Engineering
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications engineering
  3. articles
  4. article
Harnessing synthetic biology for energy-efficient bioinspired electronics: applications for logarithmic data converters
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Harnessing synthetic biology for energy-efficient bioinspired electronics: applications for logarithmic data converters

  • Ilan Oren1,
  • Vishesh Gupta2,
  • Mouna Habib1,
  • Yizhak Shifman  ORCID: orcid.org/0000-0003-1089-10813,
  • Joseph Shor3,
  • Loai Danial  ORCID: orcid.org/0000-0001-7539-58344 &
  • …
  • Ramez Daniel  ORCID: orcid.org/0000-0001-8886-36681 

Communications Engineering , Article number:  (2026) Cite this article

  • 15 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational science
  • Electrical and electronic engineering

Abstract

Neuronal networks have driven advances in artificial intelligence, while molecular networks can provide powerful frameworks for energy-efficient information processing. Inspired by biological principles, we present a computational framework for mapping synthetic gene circuits into bio-inspired electronic architectures. In particular, we developed logarithmic Analog-to-Digital Converter (ADC), operating in current mode with a logarithmic encoding scheme, compresses an 80 dB dynamic range into three bits while consuming less than 1 µW, occupying only 0.02 mm², and operating at 4 kHz. Our bio-inspired approach achieves linear scaling of power, unlike conventional linear ADCs where power consumption increases exponentially with bit resolution, significantly improving efficiency in resource-constrained settings. Through a computational trade-off analysis, we demonstrate that logarithmic encoding maximizes spatial resource efficiency among power consumption and computational accuracy. By leveraging synthetic gene circuits as a model for efficient computation, this study provides a platform for the convergence of synthetic biology and bio-inspired electronic design.

Data availability

All data supporting the findings of this study are included in the article and its Supplementary Notes. Any additional requests for information can be directed to the corresponding author.

Code availability

Code will be made available on reasonable request

References

  1. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Google Scholar 

  2. Kudithipudi, D. et al. Neuromorphic computing at scale. Nature 637, 801–812 (2025).

    Google Scholar 

  3. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    Google Scholar 

  4. Sarpeshkar, R. Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems, Vol. 9780521857277 (Cambridge University Press, 2010).

  5. Sarpeshkar, R. Analog synthetic biology. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20130110 (2014).

    Google Scholar 

  6. Teo, J. J. Y., Woo, S. S. & Sarpeshkar, R. Synthetic biology: a unifying view and review using analog circuits. IEEE Trans. Biomed. Circuits Syst. 9, 453–474 (2015).

    Google Scholar 

  7. Mandal, S. & Sarpeshkar, R. Log-domain circuit models of chemical reactions. In Proceedings—IEEE International Symposium on Circuits and Systems - ISCAS, 2697–2700 https://doi.org/10.1109/ISCAS.2009.5118358 (2009).

  8. Hanna, H. A., Danial, L., Kvatinsky, S. & Daniel, R. Cytomorphic electronics with memristors for modeling fundamental genetic circuits. IEEE Trans. Biomed. Circuits Syst. 14, 386–401 (2020).

    Google Scholar 

  9. Woo, S. S., Kim, J. & Sarpeshkar, R. A digitally programmable cytomorphic chip for simulation of arbitrary biochemical reaction networks. IEEE Trans. Biomed. Circuits Syst. 12, 360–378 (2018).

    Google Scholar 

  10. Woo, S. S., Kim, J. & Sarpeshkar, R. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. IEEE Trans. Biomed. Circuits Syst. 9, 527–542 (2015).

    Google Scholar 

  11. Kim, J., Woo, S. S. & Sarpeshkar, R. Fast and precise emulation of stochastic biochemical reaction networks with amplified thermal noise in silicon chips. IEEE Trans. Biomed. Circuits Syst. 12, 379–389 (2018).

    Google Scholar 

  12. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).

    Google Scholar 

  13. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Google Scholar 

  14. Li, X. & Daniel, R. Synthetic nonlinear computation for genetic circuit design. Curr. Opin. Biotechnol. 76, 102727 (2022).

    Google Scholar 

  15. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Google Scholar 

  16. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Google Scholar 

  17. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wiresg’. Nature 469, 212–215 (2011).

    Google Scholar 

  18. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    Google Scholar 

  19. Andrews, L. B., Nielsen, A. A. K. & Voigt, C. A. Cellular checkpoint control using programmable sequential logic. Science 361, 1340–1344 (2018).

    Google Scholar 

  20. Li, X. et al. Synthetic neural-like computing in microbial consortia for pattern recognition. Nat. Commun. 12, 3139 (2021).

    Google Scholar 

  21. Samuel, R. & Daniel, R. Intelligent computation in cancer gene therapy. Front. Genet. 15, 1252246 (2024).

    Google Scholar 

  22. Rizik, L., Danial, L., Habib, M., Weiss, R. & Daniel, R. Synthetic neuromorphic computing in living cells. Nat. Commun. 13, 5602 (2022).

    Google Scholar 

  23. Ferrell, J. E. Signaling Motifs and Weber’s law. Mol. Cell 36, 724–727 (2009).

    Google Scholar 

  24. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Google Scholar 

  25. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    Google Scholar 

  26. Sit, J. J. & Sarpeshkar, R. A micropower logarithmic A/D with offset and temperature compensation. IEEE J. Solid State Circuits 39, 308–319 (2004).

    Google Scholar 

  27. Mahattanakul, J. Logarithmic data converter suitable for hearing aid applications. Electron Lett. 41, 394–396 (2005).

    Google Scholar 

  28. Alon, U. An Introduction to Systems Biology Design Principles of Biological Circuits (CRC Press, 2006).

  29. Daniel, R., Woo, S. S., Turicchia, L. & Sarpeshkar, R. Analog transistor models of bacterial genetic circuits. In 2011 IEEE Biomedical Circuits and Systems Conference - BioCAS, 333–336 (2011).

  30. Teo, J. J. Y. & Sarpeshkar, R. The merging of biological and electronic circuits. iScience 23, 101688 (2020).

    Google Scholar 

  31. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).

    Google Scholar 

  32. Danial, L. et al. Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing. Nat. Electron. 2, 596–605 (2019).

    Google Scholar 

  33. Gilbert, B. Translinear circuits: a proposed classification. Electron. Lett. 11, 14–16 (1975).

    Google Scholar 

  34. Gilbert, B. Translinear circuits: an historical overview. Analog Integr. Circuits Signal Process 9, 95–118 (1996).

    Google Scholar 

  35. Andreou, A. G. & Boahen, K. A. Translinear circuits in subthreshold MOS. Analog Integr. Circuits Signal Process 9, 141–166 (1996).

    Google Scholar 

  36. Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1–23 (2011).

    Google Scholar 

  37. Tank, D. W. & Hopfield, J. J. Simple “neural” optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33, 533–541 (1986).

    Google Scholar 

  38. Danial, L., Wainstein, N., Kraus, S. & Kvatinsky, S. Breaking through the speed-power-accuracy tradeoff in ADCs using a memristive neuromorphic architecture. IEEE Trans. Emerg. Top. Comput Intell. 2, 396–409 (2018).

    Google Scholar 

  39. Danielli, L., Li, X., Tuler, T. & Daniel, R. Quantifying the distribution of protein oligomerization degree reflects cellular information capacity. Sci. Rep. 10, 1–10 (2020).

    Google Scholar 

  40. Sarpeshkar, R. Analog versus digital: extrapolating from electronics to neurobiology. Neural Comput. 10, 1601–1638 (1998).

    Google Scholar 

  41. Mandal, S. Collective analog bioelectronic computation. https://dspace.mit.edu/handle/1721.1/52801 (2009).

  42. Walden, R. H. Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17, 539–550 (1999).

    Google Scholar 

  43. Rhew, H. G. et al. A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J. Solid State Circuits 49, 2213–2227 (2014).

    Google Scholar 

  44. Lee, J. et al. A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s logarithmic pipeline ADC. IEEE J. Solid State Circuits 44, 2755–2765 (2009).

    Google Scholar 

  45. Lee, J., Rhew, H. G., Kipke, D. R. & Flynn, M. P. A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J. Solid State Circuits 45, 1935–1945 (2010).

    Google Scholar 

  46. Judy, M., Sodagar, A. M., Lotfi, R. & Sawan, M. Nonlinear signal-specific ADC for efficient neural recording in brain-machine interfaces. IEEE Trans. Biomed. Circuits Syst. 8, 371–381 (2014).

    Google Scholar 

  47. Thanachayanont, A. A 1-V, 330-nW, 6-Bit current-mode logarithmic cyclic ADC for ISFET-based pH digital readout system. Circuits Syst. Signal Process 34, 1405–1414 (2015).

    Google Scholar 

  48. Morton, E. J., Ng, C. Y. & Menezes, T. Low noise integrating preamplifier with integral ADC. IEEE Electron Device Lett. 40, 352–355 (2019).

    Google Scholar 

  49. Wolffenbuttel, R. F. Nonlinear AD converters for integrated silicon optical sensors. In VLSI and Computer Peripherals/ COMPEURO. https://doi.org/10.1109/cmpeur.1989.93420 (1989).

  50. Francesconi, F. & Maloberti, F. Low power logarithmic A/D converter. Proc. IEEE Int. Symp. Circuits Syst. 1, 473–476 (1996).

    Google Scholar 

  51. Hernandez, L. & Paton, S. Continuous-time noise-shaping modulator for logarithmic A/D conversion. Proc. IEEE Int. Symp. Circuits Syst. 2, 955–956 (1999).

    Google Scholar 

  52. Guilherme, J., Vital, J. & Franca, J. A CMOS logarithmic pipeline A/D converter with a dynamic range of 80 dB. Proc. IEEE Int. Conf. Electron. Circuits, Syst. 1, 193–196 (2002).

    Google Scholar 

  53. Danial, L., Sharma, K., Dwivedi, S. & Kvatinsky, S. Logarithmic neural network data converters using memristors for biomedical applications. IEEE BioCAS 2019—Biomedical Circuits and Systems Conference, Proceedings. https://doi.org/10.1109/BIOCAS.2019.8919068 (2019).

  54. Chen, S. F., Juang, Y. J., Huang, S. Y. & King, Y. C. Logarithmic CMOS image sensor through multi-resolution analog-to-digital conversion. IEEE- International Symposium on VLSI Technology, Systems, and Applications, Proceedings, Vol. 2003 (2003).

  55. Sundarasaradula, Y., Constandinou, T. G. & Thanachayanont, A. A 6-bit, two-step, successive approximation logarithmic ADC for biomedical applications. IEEE Int. Conf. Electron., Circuits Syst., ICECS 25–28 (2016).

  56. Yang, H. Y. & Sarpeshkar, R. A bio-inspired ultra-energy-efficient analog-to-digital converter for biomedical applications. IEEE Trans. Circuit Syst. I: Reg. Papers 53, 2349–2356 (2006).

    Google Scholar 

  57. Shokri, R., Koolivand, Y., Shoaei, O., Caviglia, D. D. & Aiello, O. A reconfigurable, nonlinear, low-power, VCO-based ADC for neural recording applications. Sensors 24, 6161 (2024).

    Google Scholar 

  58. Sirimasakul, S. & Thanachayanont, A. A Logarithmic level-crossing ADC with fixed comparison window. IEEE 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2022 https://doi.org/10.1109/ECTI-CON54298.2022.9795458 (2022).

  59. Sengupta, S. & Johnston, M. L. A widely reconfigurable piecewise-linear ADC for information-aware quantization. IEEE Trans. Circuits Syst. II Express Briefs 68, 1073–1077 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank, Ofir Glick, Hadar Sade, Itay Weinstein, Harel Segal, Shlomo Koifman and Simcha Edery from the Technion-Israel Institute of Technology for supporting this research. This work was funded by the Israel Innovation Authority (Grant No. 75699).

Author information

Authors and Affiliations

  1. Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

    Ilan Oren, Mouna Habib & Ramez Daniel

  2. School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel

    Vishesh Gupta

  3. Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

    Yizhak Shifman & Joseph Shor

  4. Department of Electrical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, USA

    Loai Danial

Authors
  1. Ilan Oren
    View author publications

    Search author on:PubMed Google Scholar

  2. Vishesh Gupta
    View author publications

    Search author on:PubMed Google Scholar

  3. Mouna Habib
    View author publications

    Search author on:PubMed Google Scholar

  4. Yizhak Shifman
    View author publications

    Search author on:PubMed Google Scholar

  5. Joseph Shor
    View author publications

    Search author on:PubMed Google Scholar

  6. Loai Danial
    View author publications

    Search author on:PubMed Google Scholar

  7. Ramez Daniel
    View author publications

    Search author on:PubMed Google Scholar

Contributions

I.O., L.D., and R.D. designed the study. I.O. and V.G. performed electronic simulations and collected data. M.H. performed the biological experiments and collected data. L.D., Y.S., and J.S. reviewed the design and the results. All authors analyzed the data, discussed the results, and wrote the manuscript.

Corresponding author

Correspondence to Ramez Daniel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Engineering thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: [Wenjie Wang, Rosamund Daw]. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

SUPPLEMENTAL MATERIAL

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oren, I., Gupta, V., Habib, M. et al. Harnessing synthetic biology for energy-efficient bioinspired electronics: applications for logarithmic data converters. Commun Eng (2026). https://doi.org/10.1038/s44172-026-00589-5

Download citation

  • Received: 24 April 2025

  • Accepted: 12 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s44172-026-00589-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Policies
  • Open Access
  • Journal Metrics
  • Article Processing Charges
  • Contact
  • Conferences

Publish with us

  • For authors
  • For referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Engineering (Commun Eng)

ISSN 2731-3395 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics