Abstract
Over the past decade there has been a surge in interest in placebo-controlled trials using non-classical 3,4-methylenedioxymethamphetamine (MDMA) and classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT) to treat neuropsychiatric disorders. However, the success and reliability of these trials depend on the design of the trials, the choice of control conditions, and the ability to blind both participants and researchers. When appropriate control conditions are lacking, it becomes difficult to disentangle placebo and expectation effects from medication effects. Here we explore the neurobiology of placebo and expectation effects, alongside the methodological considerations for selecting suitable control conditions in psychedelic trials. This includes examining the advantages and disadvantages of various control conditions and proposing new directions to enhance the validity of these trials and their regulatory science. By addressing these factors, we aim to improve the reliability of psychedelic research in uncovering the therapeutic benefits of psychedelics beyond placebo and expectation effects.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$79.00 per year
only $6.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
The promise and perils of psychedelics. N. Engl. J. Med. 388, e24 (2023); https://doi.org/10.1056/NEJMp2300936
Mullard, A. MDMA scores PTSD success in a landmark phase III trial. Nat. Rev. Drug Discov. 20, 414 (2021).
Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat. Med. 27, 1025–1033 (2021).
Barber, G., Nemeroff, C. B. & Siegel, S. A case of prolonged mania, psychosis and severe depression after psilocybin use: implications of increased psychedelic drug availability. Am. J. Psychiatry 179, 892–896 (2022).
Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 387, 1637–1648 (2022).
Watson, C. The psychedelic remedy for chronic pain. Nature 609, S100–S102 (2022).
Kurtz, J. S. et al. The use of psychedelics in the treatment of medical conditions: an analysis of currently registered psychedelics studies in the American Drug Trial Registry. Cureus 14, e29167 (2022).
Olson, D. E. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J. Exp. Neurosci. 12, 1179069518800508 (2018).
Aguilar, M. A., Garcia-Pardo, M. P. & Parrott, A. C. Of mice and men on MDMA: a translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine (‘Ecstasy’). Brain Res. 1727, 146556 (2020).
Hess, E. M., Riggs, L. M., Michaelides, M. & Gould, T. D. Mechanisms of ketamine and its metabolites as antidepressants. Biochem. Pharmacol. 197, 114892 (2022).
Levinstein, M. R. et al. Mu opioid receptor activation mediates (S)-ketamine reinforcement in rats: implications for abuse liability. Biol. Psychiatry 93, 1118–1126 (2023).
Lumsden, E. W. et al. Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc. Natl Acad. Sci. USA 116, 5160–5169 (2019).
Zanos, P. & Gould, T. D. Intracellular signaling pathways involved in (S)- and (R)-ketamine antidepressant actions. Biol. Psychiatry 83, 2–4 (2018).
Zanos, P. et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533, 481–486 (2016).
Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Focus 21, 315–328 (2023).
Mitchell, J. M. et al. MDMA-assisted therapy for moderate to severe PTSD: a randomized, placebo-controlled phase 3 trial. Nat. Med. 29, 2473–2480 (2023).
Reardon, S. Psychedelic drug MDMA moves closer to US approval following success in PTSD trial. Nature https://doi.org/10.1038/d41586-023-02886-x (2023).
Slomski, A. MDMA-assisted therapy highly effective for PTSD. J. Am. Med. Assoc. 326, 299 (2021).
Reardon, S. MDMA therapy for PTSD rejected by FDA panel. Nature https://doi.org/10.1038/d41586-024-01622-3 (2024).
Kupferschmidt, K. Psychedelics field looks ahead after FDA advisers’ rejection. Science 384, 1158–1159 (2024).
Mullard, A. MDMA-assisted therapy for PTSD passes phase III trial. Nat. Rev. Drug Discov. 22, 863 (2023).
Madero, S. & Alvarez, O. D. Premise, promise and challenges of MDMA assisted therapy for PTSD. Eur. Neuropsychopharmacol. 70, 19–20 (2023).
Colloca, L. & Barsky, A. J. Placebo and nocebo effects. N. Engl. J. Med. 382, 554–561 (2020).
Amanzio, M. & Benedetti, F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19, 484–494 (1999).
Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).
Colloca, L., Lopiano, L., Lanotte, M. & Benedetti, F. Overt versus covert treatment for pain, anxiety and Parkinson’s disease. Lancet Neurol. 3, 679–684 (2004).
Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A. & Maggi, G. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71, 135–140 (1997).
Benedetti, F., Amanzio, M., Vighetti, S. & Asteggiano, G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26, 12014–12022 (2006).
Olson, J. A., Suissa-Rocheleau, L., Lifshitz, M., Raz, A. & Veissiere, S. P. L. Tripping on nothing: placebo psychedelics and contextual factors. Psychopharmacology (Berl.) 237, 1371–1382 (2020).
Studerus, E., Kometer, M., Hasler, F. & Vollenweider, F. X. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J. Psychopharmacol. 25, 1434–1452 (2011).
Neogi, T. & Colloca, L. Placebo effects in osteoarthritis: implications for treatment and drug development. Nat. Rev. Rheumatol. 19, 613–626 (2023).
Colloca, L. Tell me the truth and I will not be harmed: informed consents and nocebo effects. Am. J. Bioeth. 17, 46–48 (2017).
Colloca, L. Nocebo effects can make you feel pain. Science 358, 44 (2017).
Colloca, L. The nocebo effect. Annu. Rev. Pharmacol. Toxicol. 64, 171–190 (2024).
Vase, L., Amanzio, M. & Price, D. D. Nocebo vs. placebo: the challenges of trial design in analgesia research. Clin. Pharmacol. Ther. 97, 143–150 (2015).
Vase, L. et al. Predictors of the placebo analgesia response in randomized controlled trials of chronic pain: a meta-analysis of the individual data from nine industrially sponsored trials. Pain https://doi.org/10.1097/j.pain.0000000000000217 (2015).
Colloca, L. Placebo, nocebo and learning mechanisms. Handb. Exp. Pharmacol. 225, 17–35 (2014).
Colloca, L. & Miller, F. G. Role of expectations in health. Curr. Opin. Psychiatry 24, 149–155 (2011).
Dolgin, E. Fluctuating baseline pain implicated in failure of clinical trials. Nat. Med. 16, 1053 (2010).
Huneke, N. T. M., van der Wee, N., Garner, M. & Baldwin, D. S. Why we need more research into the placebo response in psychiatry. Psychol. Med. 50, 2317–2323 (2020).
Rosenzweig, P., Brohier, S. & Zipfel, A. The placebo effect in healthy volunteers: influence of experimental conditions on the adverse events profile during phase I studies. Clin. Pharmacol. Ther. 54, 578–583 (1993).
Hauser, W., Sarzi-Puttini, P., Tolle, T. R. & Wolfe, F. Placebo and nocebo responses in randomised controlled trials of drugs applying for approval for fibromyalgia syndrome treatment: systematic review and meta-analysis. Clin. Exp. Rheumatol. 30, 78–87 (2012).
Rief, W., Avorn, J. & Barsky, A. J. Medication-attributed adverse effects in placebo groups: implications for assessment of adverse effects. Arch. Intern. Med. 166, 155–160 (2006).
Fava, M., Evins, A. E., Dorer, D. J. & Schoenfeld, D. A. The problem of the placebo response in clinical trials for psychiatric disorders: culprits, possible remedies and a novel study design approach. Psychother. Psychosom. 72, 115–127 (2003).
Colloca, L. The placebo effect in pain therapies. Annu. Rev. Pharmacol. Toxicol. 59, 191–211 (2019).
Bingel, U. et al. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 3, 70ra14 (2011).
Petersen, G. L. et al. Expectations and positive emotional feelings accompany reductions in ongoing and evoked neuropathic pain following placebo interventions. Pain 155, 2687–2698 (2014).
Linde, K. et al. The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. Pain 128, 264–271 (2007).
Wartolowska, K. et al. Use of placebo controls in the evaluation of surgery: systematic review. Br. Med. J. 348, g3253 (2014).
Cormier, S., Lavigne, G. L., Choinière, M. & Rainville, P. Expectations predict chronic pain treatment outcomes. Pain 157, 329–338 (2016).
Metaxa, A. M. & Clarke, M. Efficacy of psilocybin for treating symptoms of depression: systematic review and meta-analysis. Br. Med. J. 385, e078084 (2024).
Young, N. S., Ioannidis, J. P. & Al-Ubaydli, O. Why current publication practices may distort science. PLoS Med. 5, e201 (2008).
Fanelli, D., Costas, R. & Ioannidis, J. P. Meta-assessment of bias in science. Proc. Natl Acad. Sci. USA 114, 3714–3719 (2017).
Schooler, J. Unpublished results hide the decline effect. Nature 470, 437–437 (2011).
Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).
Scott, A. J., Sharpe, L., Quinn, V. & Colagiuri, B. Association of single-blind placebo run-in periods with the placebo response in randomized clinical trials of antidepressants: a systematic review and meta-analysis. JAMA Psychiatry 79, 42–49 (2022).
Iovieno, N. & Papakostas, G. I. Correlation between different levels of placebo response rate and clinical trial outcome in major depressive disorder: a meta-analysis. J. Clin. Psychiatry 73, 1300–1306 (2012).
Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl.) 187, 268–283 (2006).
Papakostas, G. I. et al. Efficacy of esketamine augmentation in major depressive disorder: a meta-analysis. J. Clin. Psychiatry 81, 19r12889 (2020).
Bauer, M., El-Khalili, N., Datto, C., Szamosi, J. & Eriksson, H. A pooled analysis of two randomised, placebo-controlled studies of extended release quetiapine fumarate adjunctive to antidepressant therapy in patients with major depressive disorder. J. Affect. Disord. 127, 19–30 (2010).
Soliman, P. S., Curley, D. E., Capone, C., Eaton, E. & Haass-Koffler, C. L. In the new era of psychedelic assisted therapy: a systematic review of study methodology in randomized controlled trials. Psychopharmacology (Berl.) 241, 1101–1110 (2024).
Grob, C. S. et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch. Gen. Psychiatry 68, 71–78 (2011).
Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180 (2016).
Holze, F., Gasser, P., Muller, F., Dolder, P. C. & Liechti, M. E. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled phase II study. Biol. Psychiatry 93, 215–223 (2023).
Fava, M. et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol. Psychiatry 25, 1592–1603 (2020).
Bogenschutz, M. P. et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry 79, 953–962 (2022).
Jensen, J. S., Bielefeldt, A. O. & Hrobjartsson, A. Active placebo control groups of pharmacological interventions were rarely used but merited serious consideration: a methodological overview. J. Clin. Epidemiol. 87, 35–46 (2017).
Laursen, D. R. et al. Impact of active placebo controls on estimated drug effects in randomised trials: a systematic review of trials with both active placebo and standard placebo. Cochrane Database Syst. Rev. 3, MR000055 (2023).
Lembo, A. et al. Open-label placebo vs double-blind placebo for irritable bowel syndrome: a randomized clinical trial. Pain 162, 2428–2435 (2021).
Carvalho, C. et al. Open-label placebo for chronic low back pain: a 5-year follow-up. Pain 162, 1521–1527 (2021).
Disley, N., Kola-Palmer, S. & Retzler, C. A comparison of open-label and deceptive placebo analgesia in a healthy sample. J. Psychosom. Res. 140, 110298 (2021).
Specker Sullivan, L. More than consent for ethical open-label placebo research. J. Med. Ethics https://doi.org/10.1136/medethics-2019-105893 (2020).
Kaptchuk, T. J. Open-label placebo: reflections on a research agenda. Perspect. Biol. Med. 61, 311–334 (2018).
Kaptchuk, T. J. & Miller, F. G. Open label placebo: can honestly prescribed placebos evoke meaningful therapeutic benefits?. Br. Med. J. 363, k3889 (2018).
Flowers, K. M. et al. Conditioned open-label placebo for opioid reduction after spine surgery: a randomized controlled trial. Pain 162, 1828–1839 (2021).
Shiffman, S., Stone, A. A. & Hufford, M. R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008).
Sarpatwari, A., Kohli, S., Tu, S. S. & Kesselheim, A. S. Patents on risk evaluation and mitigation strategies for prescription drugs and generic competition. J. Am. Med. Assoc. 331, 976–978 (2024).
Geers, A. L., Spotts, E. K., Vang, M., Mayer, S. R. & Miller, F. G. The use of authorized concealment to minimize nocebo side effects: a survey of US public attitudes. Psychother. Psychosom. 92, 391–398 (2023).
Blease, C. Authorized concealment and authorized deception: well-intended secrets are likely to induce nocebo effects. Am. J. Bioeth. 15, 23–25 (2015).
Bedford, T. et al. Attitudes toward a pre-authorized concealed opioid taper: a qualitative analysis of patient and clinician perspectives. Front. Psychiatry 13, 820357 (2022).
Goo, S. J. et al. Attitudes and perceptions toward authorized deception: a pilot comparison of healthy controls and fibromyalgia patients. Pain Med. 21, 794–802 (2020).
Papakostas, G. I. & Fava, M. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur. Neuropsychopharmacol. 19, 34–40 (2009).
Palhano-Fontes, F. et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial. Psychol. Med. 49, 655–663 (2019).
Bottemanne, H. et al. Evaluation of early ketamine effects on belief-updating biases in patients with treatment-resistant depression. JAMA Psychiatry 79, 1124–1132 (2022).
Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).
Szigeti, B. et al. Assessing expectancy and suggestibility in a trial of escitalopram v. psilocybin for depression. Psychol. Med. 54, 1717–1724 (2024).
Colloca, L., Nikayin, S. & Sanacora, G. The intricate interaction between expectations and therapeutic outcomes of psychedelic agents. JAMA Psychiatry 80, 867–868 (2023).
Yu, L. et al. Development of short forms from the PROMIS™ sleep disturbance and sleep-related impairment item banks. Behav. Sleep Med. 10, 6–24 (2012).
Alberts, J. et al. Development of the generic, multidimensional Treatment Expectation Questionnaire (TEX-Q) through systematic literature review, expert surveys and qualitative interviews. BMJ Open 10, e036169 (2020).
Shedden-Mora, M. C. et al. The treatment expectation questionnaire (TEX-Q): validation of a generic multidimensional scale measuring patients’ treatment expectations. PLoS ONE 18, e0280472 (2023).
Colloca, L. et al. Prior therapeutic experiences, not expectation ratings, predict placebo effects: an experimental study in chronic pain and healthy participants. Psychother. Psychosom. 89, 371–378 (2020).
Atlas, L. Y. & Wager, T. D. How expectations shape pain. Neurosci. Lett. 520, 140–148 (2012).
Fields, H. L. How expectations influence pain. Pain 159, S3–S10 (2018).
Colloca, L. & Miller, F. G. Harnessing the placebo effect: the need for translational research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1922–1930 (2011).
Crum, A. & Zuckerman, B. Changing mindsets to enhance treatment effectiveness. J. Am. Med. Assoc. 317, 2063–2064 (2017).
Kaptchuk, T. J. & Miller, F. G. Placebo effects in medicine. N. Engl. J. Med. 373, 8–9 (2015).
Ross, S., Krugman, A. D., Lyerly, S. B. & Clyde, D. J. Drugs and placebos: a model design. Psychol. Rep. 10, 383–392 (1962).
Fava, M. How should we design future mechanistic and/or efficacy clinical trials? Neuropsychopharmacology 49, 197–204 (2024).
Benedetti, F. et al. Open versus hidden medical treatments: the patientas knowledge about a therapy affects the therapy outcome. Prev. Treat. 6, 1a (2003).
Benedetti, F. et al. Autonomic and emotional responses to open and hidden stimulations of the human subthalamic region. Brain Res. Bull. 63, 203–211 (2004).
Colloca, L. et al. Veteran engagement in opioid tapering research: a mission to optimize pain management. Pain Rep. 6, e932 (2021).
Lii, T. R. et al. Randomized trial of ketamine masked by surgical anesthesia in patients with depression. Nat. Ment. Health 1, 876–886 (2023).
Honzel, E. et al. Virtual reality, music and pain: developing the premise for an interdisciplinary approach to pain management. Pain 160, 1909–1919 (2019).
Persky, S. & Colloca, L. Medical extended reality trials: building robust comparators, controls and sham. J. Med. Internet Res. 25, e45821 (2023).
Aday, J. S., Davoli, C. C. & Bloesch, E. K. Psychedelics and virtual reality: parallels and applications. Ther. Adv. Psychopharmacol. 10, 2045125320948356 (2020).
Gomez-Busto, F. J. & Ortiz, M. I. Virtual reality and psychedelics for the treatment of psychiatric disease: a systematic literature review. Clin. Neuropsychiatry 17, 365–380 (2020).
Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).
Acknowledgements
Some of research described in this Perspective is supported by the US National Institutes of Health National Center for Complementary and Integrative Health (R01AT01033 and R01AT011347).
Author information
Authors and Affiliations
Contributions
L.C. and M.F. drafted the first synopsis. L.C. prepared the first draft. L.C. and M.F. finalized the manuscript. L.C. and M.F. confirm sole responsibility for the content.
Corresponding author
Ethics declarations
Competing interests
L.C. declares no competing interests. M.F.'s disclosures are available at https://mghcme.org/maurizio-fava-bio-disclosure/.
Peer review
Peer review information
Nature Mental Health thanks Boris Heifets and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Colloca, L., Fava, M. What should constitute a control condition in psychedelic drug trials?. Nat. Mental Health 2, 1152–1160 (2024). https://doi.org/10.1038/s44220-024-00321-2
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44220-024-00321-2


