Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What should constitute a control condition in psychedelic drug trials?

Abstract

Over the past decade there has been a surge in interest in placebo-controlled trials using non-classical 3,4-methylenedioxymethamphetamine (MDMA) and classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT) to treat neuropsychiatric disorders. However, the success and reliability of these trials depend on the design of the trials, the choice of control conditions, and the ability to blind both participants and researchers. When appropriate control conditions are lacking, it becomes difficult to disentangle placebo and expectation effects from medication effects. Here we explore the neurobiology of placebo and expectation effects, alongside the methodological considerations for selecting suitable control conditions in psychedelic trials. This includes examining the advantages and disadvantages of various control conditions and proposing new directions to enhance the validity of these trials and their regulatory science. By addressing these factors, we aim to improve the reliability of psychedelic research in uncovering the therapeutic benefits of psychedelics beyond placebo and expectation effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preliminary evaluation of expectation of benefit in a phase 3 trial of MDMA plus assisted therapy versus placebo plus assisted therapy in participants with moderate to severe PTSD.

Similar content being viewed by others

References

  1. The promise and perils of psychedelics. N. Engl. J. Med. 388, e24 (2023); https://doi.org/10.1056/NEJMp2300936

  2. Mullard, A. MDMA scores PTSD success in a landmark phase III trial. Nat. Rev. Drug Discov. 20, 414 (2021).

    PubMed  Google Scholar 

  3. Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat. Med. 27, 1025–1033 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Barber, G., Nemeroff, C. B. & Siegel, S. A case of prolonged mania, psychosis and severe depression after psilocybin use: implications of increased psychedelic drug availability. Am. J. Psychiatry 179, 892–896 (2022).

    PubMed  Google Scholar 

  5. Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 387, 1637–1648 (2022).

    PubMed  Google Scholar 

  6. Watson, C. The psychedelic remedy for chronic pain. Nature 609, S100–S102 (2022).

    PubMed  Google Scholar 

  7. Kurtz, J. S. et al. The use of psychedelics in the treatment of medical conditions: an analysis of currently registered psychedelics studies in the American Drug Trial Registry. Cureus 14, e29167 (2022).

    PubMed  PubMed Central  Google Scholar 

  8. Olson, D. E. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J. Exp. Neurosci. 12, 1179069518800508 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Aguilar, M. A., Garcia-Pardo, M. P. & Parrott, A. C. Of mice and men on MDMA: a translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine (‘Ecstasy’). Brain Res. 1727, 146556 (2020).

    PubMed  Google Scholar 

  10. Hess, E. M., Riggs, L. M., Michaelides, M. & Gould, T. D. Mechanisms of ketamine and its metabolites as antidepressants. Biochem. Pharmacol. 197, 114892 (2022).

    PubMed  Google Scholar 

  11. Levinstein, M. R. et al. Mu opioid receptor activation mediates (S)-ketamine reinforcement in rats: implications for abuse liability. Biol. Psychiatry 93, 1118–1126 (2023).

    PubMed  Google Scholar 

  12. Lumsden, E. W. et al. Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc. Natl Acad. Sci. USA 116, 5160–5169 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Zanos, P. & Gould, T. D. Intracellular signaling pathways involved in (S)- and (R)-ketamine antidepressant actions. Biol. Psychiatry 83, 2–4 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Zanos, P. et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533, 481–486 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Focus 21, 315–328 (2023).

    PubMed  PubMed Central  Google Scholar 

  16. Mitchell, J. M. et al. MDMA-assisted therapy for moderate to severe PTSD: a randomized, placebo-controlled phase 3 trial. Nat. Med. 29, 2473–2480 (2023).

    PubMed  PubMed Central  Google Scholar 

  17. Reardon, S. Psychedelic drug MDMA moves closer to US approval following success in PTSD trial. Nature https://doi.org/10.1038/d41586-023-02886-x (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slomski, A. MDMA-assisted therapy highly effective for PTSD. J. Am. Med. Assoc. 326, 299 (2021).

    Google Scholar 

  19. Reardon, S. MDMA therapy for PTSD rejected by FDA panel. Nature https://doi.org/10.1038/d41586-024-01622-3 (2024).

    Article  PubMed  Google Scholar 

  20. Kupferschmidt, K. Psychedelics field looks ahead after FDA advisers’ rejection. Science 384, 1158–1159 (2024).

    PubMed  Google Scholar 

  21. Mullard, A. MDMA-assisted therapy for PTSD passes phase III trial. Nat. Rev. Drug Discov. 22, 863 (2023).

    PubMed  Google Scholar 

  22. Madero, S. & Alvarez, O. D. Premise, promise and challenges of MDMA assisted therapy for PTSD. Eur. Neuropsychopharmacol. 70, 19–20 (2023).

    PubMed  PubMed Central  Google Scholar 

  23. Colloca, L. & Barsky, A. J. Placebo and nocebo effects. N. Engl. J. Med. 382, 554–561 (2020).

    PubMed  Google Scholar 

  24. Amanzio, M. & Benedetti, F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19, 484–494 (1999).

    PubMed  PubMed Central  Google Scholar 

  25. Eippert, F. et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63, 533–543 (2009).

    PubMed  Google Scholar 

  26. Colloca, L., Lopiano, L., Lanotte, M. & Benedetti, F. Overt versus covert treatment for pain, anxiety and Parkinson’s disease. Lancet Neurol. 3, 679–684 (2004).

    PubMed  Google Scholar 

  27. Benedetti, F., Amanzio, M., Casadio, C., Oliaro, A. & Maggi, G. Blockade of nocebo hyperalgesia by the cholecystokinin antagonist proglumide. Pain 71, 135–140 (1997).

    PubMed  Google Scholar 

  28. Benedetti, F., Amanzio, M., Vighetti, S. & Asteggiano, G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26, 12014–12022 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Olson, J. A., Suissa-Rocheleau, L., Lifshitz, M., Raz, A. & Veissiere, S. P. L. Tripping on nothing: placebo psychedelics and contextual factors. Psychopharmacology (Berl.) 237, 1371–1382 (2020).

    PubMed  Google Scholar 

  30. Studerus, E., Kometer, M., Hasler, F. & Vollenweider, F. X. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J. Psychopharmacol. 25, 1434–1452 (2011).

    PubMed  Google Scholar 

  31. Neogi, T. & Colloca, L. Placebo effects in osteoarthritis: implications for treatment and drug development. Nat. Rev. Rheumatol. 19, 613–626 (2023).

    PubMed  PubMed Central  Google Scholar 

  32. Colloca, L. Tell me the truth and I will not be harmed: informed consents and nocebo effects. Am. J. Bioeth. 17, 46–48 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Colloca, L. Nocebo effects can make you feel pain. Science 358, 44 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Colloca, L. The nocebo effect. Annu. Rev. Pharmacol. Toxicol. 64, 171–190 (2024).

    PubMed  Google Scholar 

  35. Vase, L., Amanzio, M. & Price, D. D. Nocebo vs. placebo: the challenges of trial design in analgesia research. Clin. Pharmacol. Ther. 97, 143–150 (2015).

    PubMed  Google Scholar 

  36. Vase, L. et al. Predictors of the placebo analgesia response in randomized controlled trials of chronic pain: a meta-analysis of the individual data from nine industrially sponsored trials. Pain https://doi.org/10.1097/j.pain.0000000000000217 (2015).

    Article  PubMed  Google Scholar 

  37. Colloca, L. Placebo, nocebo and learning mechanisms. Handb. Exp. Pharmacol. 225, 17–35 (2014).

    PubMed  Google Scholar 

  38. Colloca, L. & Miller, F. G. Role of expectations in health. Curr. Opin. Psychiatry 24, 149–155 (2011).

    PubMed  Google Scholar 

  39. Dolgin, E. Fluctuating baseline pain implicated in failure of clinical trials. Nat. Med. 16, 1053 (2010).

    PubMed  Google Scholar 

  40. Huneke, N. T. M., van der Wee, N., Garner, M. & Baldwin, D. S. Why we need more research into the placebo response in psychiatry. Psychol. Med. 50, 2317–2323 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Rosenzweig, P., Brohier, S. & Zipfel, A. The placebo effect in healthy volunteers: influence of experimental conditions on the adverse events profile during phase I studies. Clin. Pharmacol. Ther. 54, 578–583 (1993).

    PubMed  Google Scholar 

  42. Hauser, W., Sarzi-Puttini, P., Tolle, T. R. & Wolfe, F. Placebo and nocebo responses in randomised controlled trials of drugs applying for approval for fibromyalgia syndrome treatment: systematic review and meta-analysis. Clin. Exp. Rheumatol. 30, 78–87 (2012).

    PubMed  Google Scholar 

  43. Rief, W., Avorn, J. & Barsky, A. J. Medication-attributed adverse effects in placebo groups: implications for assessment of adverse effects. Arch. Intern. Med. 166, 155–160 (2006).

    PubMed  Google Scholar 

  44. Fava, M., Evins, A. E., Dorer, D. J. & Schoenfeld, D. A. The problem of the placebo response in clinical trials for psychiatric disorders: culprits, possible remedies and a novel study design approach. Psychother. Psychosom. 72, 115–127 (2003).

    PubMed  Google Scholar 

  45. Colloca, L. The placebo effect in pain therapies. Annu. Rev. Pharmacol. Toxicol. 59, 191–211 (2019).

    PubMed  Google Scholar 

  46. Bingel, U. et al. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 3, 70ra14 (2011).

    PubMed  Google Scholar 

  47. Petersen, G. L. et al. Expectations and positive emotional feelings accompany reductions in ongoing and evoked neuropathic pain following placebo interventions. Pain 155, 2687–2698 (2014).

    PubMed  Google Scholar 

  48. Linde, K. et al. The impact of patient expectations on outcomes in four randomized controlled trials of acupuncture in patients with chronic pain. Pain 128, 264–271 (2007).

    PubMed  Google Scholar 

  49. Wartolowska, K. et al. Use of placebo controls in the evaluation of surgery: systematic review. Br. Med. J. 348, g3253 (2014).

    Google Scholar 

  50. Cormier, S., Lavigne, G. L., Choinière, M. & Rainville, P. Expectations predict chronic pain treatment outcomes. Pain 157, 329–338 (2016).

    PubMed  Google Scholar 

  51. Metaxa, A. M. & Clarke, M. Efficacy of psilocybin for treating symptoms of depression: systematic review and meta-analysis. Br. Med. J. 385, e078084 (2024).

    Google Scholar 

  52. Young, N. S., Ioannidis, J. P. & Al-Ubaydli, O. Why current publication practices may distort science. PLoS Med. 5, e201 (2008).

    PubMed  PubMed Central  Google Scholar 

  53. Fanelli, D., Costas, R. & Ioannidis, J. P. Meta-assessment of bias in science. Proc. Natl Acad. Sci. USA 114, 3714–3719 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Schooler, J. Unpublished results hide the decline effect. Nature 470, 437–437 (2011).

    PubMed  Google Scholar 

  55. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    PubMed  Google Scholar 

  56. Scott, A. J., Sharpe, L., Quinn, V. & Colagiuri, B. Association of single-blind placebo run-in periods with the placebo response in randomized clinical trials of antidepressants: a systematic review and meta-analysis. JAMA Psychiatry 79, 42–49 (2022).

    PubMed  Google Scholar 

  57. Iovieno, N. & Papakostas, G. I. Correlation between different levels of placebo response rate and clinical trial outcome in major depressive disorder: a meta-analysis. J. Clin. Psychiatry 73, 1300–1306 (2012).

    PubMed  Google Scholar 

  58. Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology (Berl.) 187, 268–283 (2006).

  59. Papakostas, G. I. et al. Efficacy of esketamine augmentation in major depressive disorder: a meta-analysis. J. Clin. Psychiatry 81, 19r12889 (2020).

    PubMed  Google Scholar 

  60. Bauer, M., El-Khalili, N., Datto, C., Szamosi, J. & Eriksson, H. A pooled analysis of two randomised, placebo-controlled studies of extended release quetiapine fumarate adjunctive to antidepressant therapy in patients with major depressive disorder. J. Affect. Disord. 127, 19–30 (2010).

    PubMed  Google Scholar 

  61. Soliman, P. S., Curley, D. E., Capone, C., Eaton, E. & Haass-Koffler, C. L. In the new era of psychedelic assisted therapy: a systematic review of study methodology in randomized controlled trials. Psychopharmacology (Berl.) 241, 1101–1110 (2024).

    PubMed  Google Scholar 

  62. Grob, C. S. et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch. Gen. Psychiatry 68, 71–78 (2011).

    PubMed  Google Scholar 

  63. Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Holze, F., Gasser, P., Muller, F., Dolder, P. C. & Liechti, M. E. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled phase II study. Biol. Psychiatry 93, 215–223 (2023).

    PubMed  Google Scholar 

  65. Fava, M. et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol. Psychiatry 25, 1592–1603 (2020).

    PubMed  Google Scholar 

  66. Bogenschutz, M. P. et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry 79, 953–962 (2022).

    PubMed  PubMed Central  Google Scholar 

  67. Jensen, J. S., Bielefeldt, A. O. & Hrobjartsson, A. Active placebo control groups of pharmacological interventions were rarely used but merited serious consideration: a methodological overview. J. Clin. Epidemiol. 87, 35–46 (2017).

    PubMed  Google Scholar 

  68. Laursen, D. R. et al. Impact of active placebo controls on estimated drug effects in randomised trials: a systematic review of trials with both active placebo and standard placebo. Cochrane Database Syst. Rev. 3, MR000055 (2023).

    PubMed  Google Scholar 

  69. Lembo, A. et al. Open-label placebo vs double-blind placebo for irritable bowel syndrome: a randomized clinical trial. Pain 162, 2428–2435 (2021).

    PubMed  PubMed Central  Google Scholar 

  70. Carvalho, C. et al. Open-label placebo for chronic low back pain: a 5-year follow-up. Pain 162, 1521–1527 (2021).

    PubMed  Google Scholar 

  71. Disley, N., Kola-Palmer, S. & Retzler, C. A comparison of open-label and deceptive placebo analgesia in a healthy sample. J. Psychosom. Res. 140, 110298 (2021).

    PubMed  Google Scholar 

  72. Specker Sullivan, L. More than consent for ethical open-label placebo research. J. Med. Ethics https://doi.org/10.1136/medethics-2019-105893 (2020).

    Article  PubMed  Google Scholar 

  73. Kaptchuk, T. J. Open-label placebo: reflections on a research agenda. Perspect. Biol. Med. 61, 311–334 (2018).

    PubMed  Google Scholar 

  74. Kaptchuk, T. J. & Miller, F. G. Open label placebo: can honestly prescribed placebos evoke meaningful therapeutic benefits?. Br. Med. J. 363, k3889 (2018).

    Google Scholar 

  75. Flowers, K. M. et al. Conditioned open-label placebo for opioid reduction after spine surgery: a randomized controlled trial. Pain 162, 1828–1839 (2021).

    PubMed  PubMed Central  Google Scholar 

  76. Shiffman, S., Stone, A. A. & Hufford, M. R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008).

    PubMed  Google Scholar 

  77. Sarpatwari, A., Kohli, S., Tu, S. S. & Kesselheim, A. S. Patents on risk evaluation and mitigation strategies for prescription drugs and generic competition. J. Am. Med. Assoc. 331, 976–978 (2024).

    Google Scholar 

  78. Geers, A. L., Spotts, E. K., Vang, M., Mayer, S. R. & Miller, F. G. The use of authorized concealment to minimize nocebo side effects: a survey of US public attitudes. Psychother. Psychosom. 92, 391–398 (2023).

    PubMed  Google Scholar 

  79. Blease, C. Authorized concealment and authorized deception: well-intended secrets are likely to induce nocebo effects. Am. J. Bioeth. 15, 23–25 (2015).

    PubMed  Google Scholar 

  80. Bedford, T. et al. Attitudes toward a pre-authorized concealed opioid taper: a qualitative analysis of patient and clinician perspectives. Front. Psychiatry 13, 820357 (2022).

    PubMed  PubMed Central  Google Scholar 

  81. Goo, S. J. et al. Attitudes and perceptions toward authorized deception: a pilot comparison of healthy controls and fibromyalgia patients. Pain Med. 21, 794–802 (2020).

    PubMed  Google Scholar 

  82. Papakostas, G. I. & Fava, M. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur. Neuropsychopharmacol. 19, 34–40 (2009).

    PubMed  Google Scholar 

  83. Palhano-Fontes, F. et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial. Psychol. Med. 49, 655–663 (2019).

    PubMed  PubMed Central  Google Scholar 

  84. Bottemanne, H. et al. Evaluation of early ketamine effects on belief-updating biases in patients with treatment-resistant depression. JAMA Psychiatry 79, 1124–1132 (2022).

    PubMed  PubMed Central  Google Scholar 

  85. Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).

    PubMed  Google Scholar 

  86. Szigeti, B. et al. Assessing expectancy and suggestibility in a trial of escitalopram v. psilocybin for depression. Psychol. Med. 54, 1717–1724 (2024).

    PubMed  Google Scholar 

  87. Colloca, L., Nikayin, S. & Sanacora, G. The intricate interaction between expectations and therapeutic outcomes of psychedelic agents. JAMA Psychiatry 80, 867–868 (2023).

    PubMed  PubMed Central  Google Scholar 

  88. Yu, L. et al. Development of short forms from the PROMIS™ sleep disturbance and sleep-related impairment item banks. Behav. Sleep Med. 10, 6–24 (2012).

    Google Scholar 

  89. Alberts, J. et al. Development of the generic, multidimensional Treatment Expectation Questionnaire (TEX-Q) through systematic literature review, expert surveys and qualitative interviews. BMJ Open 10, e036169 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Shedden-Mora, M. C. et al. The treatment expectation questionnaire (TEX-Q): validation of a generic multidimensional scale measuring patients’ treatment expectations. PLoS ONE 18, e0280472 (2023).

    PubMed  PubMed Central  Google Scholar 

  91. Colloca, L. et al. Prior therapeutic experiences, not expectation ratings, predict placebo effects: an experimental study in chronic pain and healthy participants. Psychother. Psychosom. 89, 371–378 (2020).

    PubMed  Google Scholar 

  92. Atlas, L. Y. & Wager, T. D. How expectations shape pain. Neurosci. Lett. 520, 140–148 (2012).

    PubMed  Google Scholar 

  93. Fields, H. L. How expectations influence pain. Pain 159, S3–S10 (2018).

    PubMed  Google Scholar 

  94. Colloca, L. & Miller, F. G. Harnessing the placebo effect: the need for translational research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1922–1930 (2011).

    Google Scholar 

  95. Crum, A. & Zuckerman, B. Changing mindsets to enhance treatment effectiveness. J. Am. Med. Assoc. 317, 2063–2064 (2017).

    Google Scholar 

  96. Kaptchuk, T. J. & Miller, F. G. Placebo effects in medicine. N. Engl. J. Med. 373, 8–9 (2015).

    PubMed  Google Scholar 

  97. Ross, S., Krugman, A. D., Lyerly, S. B. & Clyde, D. J. Drugs and placebos: a model design. Psychol. Rep. 10, 383–392 (1962).

    Google Scholar 

  98. Fava, M. How should we design future mechanistic and/or efficacy clinical trials? Neuropsychopharmacology 49, 197–204 (2024).

    PubMed  Google Scholar 

  99. Benedetti, F. et al. Open versus hidden medical treatments: the patientas knowledge about a therapy affects the therapy outcome. Prev. Treat. 6, 1a (2003).

    Google Scholar 

  100. Benedetti, F. et al. Autonomic and emotional responses to open and hidden stimulations of the human subthalamic region. Brain Res. Bull. 63, 203–211 (2004).

    PubMed  Google Scholar 

  101. Colloca, L. et al. Veteran engagement in opioid tapering research: a mission to optimize pain management. Pain Rep. 6, e932 (2021).

    PubMed  PubMed Central  Google Scholar 

  102. Lii, T. R. et al. Randomized trial of ketamine masked by surgical anesthesia in patients with depression. Nat. Ment. Health 1, 876–886 (2023).

    PubMed  PubMed Central  Google Scholar 

  103. Honzel, E. et al. Virtual reality, music and pain: developing the premise for an interdisciplinary approach to pain management. Pain 160, 1909–1919 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Persky, S. & Colloca, L. Medical extended reality trials: building robust comparators, controls and sham. J. Med. Internet Res. 25, e45821 (2023).

    PubMed  PubMed Central  Google Scholar 

  105. Aday, J. S., Davoli, C. C. & Bloesch, E. K. Psychedelics and virtual reality: parallels and applications. Ther. Adv. Psychopharmacol. 10, 2045125320948356 (2020).

    PubMed  PubMed Central  Google Scholar 

  106. Gomez-Busto, F. J. & Ortiz, M. I. Virtual reality and psychedelics for the treatment of psychiatric disease: a systematic literature review. Clin. Neuropsychiatry 17, 365–380 (2020).

    PubMed  PubMed Central  Google Scholar 

  107. Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some of research described in this Perspective is supported by the US National Institutes of Health National Center for Complementary and Integrative Health (R01AT01033 and R01AT011347).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and M.F. drafted the first synopsis. L.C. prepared the first draft. L.C. and M.F. finalized the manuscript. L.C. and M.F. confirm sole responsibility for the content.

Corresponding author

Correspondence to Luana Colloca.

Ethics declarations

Competing interests

L.C. declares no competing interests. M.F.'s disclosures are available at https://mghcme.org/maurizio-fava-bio-disclosure/.

Peer review

Peer review information

Nature Mental Health thanks Boris Heifets and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colloca, L., Fava, M. What should constitute a control condition in psychedelic drug trials?. Nat. Mental Health 2, 1152–1160 (2024). https://doi.org/10.1038/s44220-024-00321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-024-00321-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing