Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Advancing a consent-forward paradigm for digital mental health data

Abstract

The field of digital mental health is advancing at a rapid pace. Passively collected data from user engagements with digital tools and services continue to contribute insights into mental health and illness. As the field of digital mental health grows, a concerning norm has been established—digital service users are given little say over how their data are collected, shared or used to generate revenue for private companies. Given a long history of service-user exclusion from data collection practices, we propose an alternative approach that is attentive to this history: the consent-forward paradigm. This paradigm embeds principles of affirmative consent in the design of digital mental health tools and services, which may strengthen trust around individual choices and needs, and proactively protect users from unexpected harm. In this Perspective, we outline practical steps to implement this paradigm, toward ensuring that people searching for care have the safest experiences possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chancellor, S. & De Choudhury, M. Methods in predictive techniques for mental health status on social media: a critical review. npj Digit. Med. 3, 43 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abd-Alrazaq, A. A., Rababeh, A., Alajlani, M., Bewick, B. M. & Househ, M. Effectiveness and safety of using chatbots to improve mental health: systematic review and meta-analysis. J. Med. Internet Res. 22, e16021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alam, M. G. R., Cho, E. J., Huh, E.-N. & Hong, C. S. Cloud based mental state monitoring system for suicide risk reconnaissance using wearable bio-sensors. In Proc. 8th International Conference on Ubiquitous Information Management and Communication 1–6 (ACM, 2014).

  4. De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G. & Kumar, M. Discovering shifts to suicidal ideation from mental health content in social media. In Proc. 2016 CHI Conference on Human Factors in Computing Systems 2098–2110 (ACM, 2016).

  5. Pruksachatkun, Y., Pendse, S. R. & Sharma, A. Moments of change: analyzing peer-based cognitive support in online mental health forums. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–13 (ACM, 2019).

  6. Canady, V. A. TikTok launches MH guide on social media impact on teens. Ment. Health Wkly 31, 5–6 (2021).

    Google Scholar 

  7. Gomes de Andrade, N. N., Pawson, D., Muriello, D., Donahue, L. & Guadagno, J. Ethics and artificial intelligence: suicide prevention on Facebook. Philos. Technol. 31, 669–684 (2018).

    Article  Google Scholar 

  8. Sinha, C., Meheli, S. & Kadaba, M. et al. Understanding digital mental health needs and usage with an artificial intelligence-led mental health app (Wysa) during the COVID-19 pandemic: retrospective analysis. JMIR Form. Res. 7, e41913 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wind, T. R., Rijkeboer, M., Andersson, G. & Riper, H. The COVID-19 pandemic: the `black swan' for mental health care and a turning point for e-health. Internet Interv. 20, 100317 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carl, J. R. et al. Regulating digital therapeutics for mental health: opportunities, challenges, and the essential role of psychologists. Br. J. Clin. Psychol. 61, 130–135 (2022).

    Article  PubMed  Google Scholar 

  11. DeAngelis, T. As funding cools, venture capitalists shift investments in mental health. In 2023 Trends Report Vol. 54, 83 (American Psychological Association, 2023).

  12. Kim, J. Data Brokers and the Sale of Americans’ Mental Health Data: The Exchange of our Most Sensitive Data and What it Means for Personal Privacy (Duke Sanford Cyber Policy Program, 2023).

  13. Bossewitch, J. et al. Digital Futures in Mind: Reflecting on Technological Experiments in Mental Health & Crisis Support (University of Melbourne, 2021); https://automatingmentalhealth.cc/

  14. Wykes, T., Lipshitz, J. & Schueller, S. M. Towards the design of ethical standards related to digital mental health and all its applications. Curr. Treat. Options Psychiatry 6, 232–242 (2019).

    Article  Google Scholar 

  15. Jilka, S. et al. Terms and conditions apply: critical issues for readability and jargon in mental health depression apps. Internet Interv. 25, 100433 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parker, L., Halter, V., Karliychuk, T. & Grundy, Q. How private is your mental health app data? An empirical study of mental health app privacy policies and practices. Int. J. Law Psychiatry 64, 198–204 (2019).

    Article  PubMed  Google Scholar 

  17. Obar, J. A. & Oeldorf-Hirsch, A. The biggest lie on the internet: ignoring the privacy policies and terms of service policies of social networking services. Inf. Commun. Soc. 23, 128–147 (2020).

    Article  Google Scholar 

  18. Ienca, M. & Malgieri, G. Mental data protection and the GDPR. J. Law Biosci. 9, lsac006 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gooding, P. Mapping the rise of digital mental health technologies: emerging issues for law and society. Int. J. Law Psychiatry 67, 101498 (2019).

    Article  PubMed  Google Scholar 

  20. Im, J. et al. Yes: affirmative consent as a theoretical framework for understanding and imagining social platforms. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–18 (ACM, 2021).

  21. Friedman, J. & Valenti, J. Yes Means Yes! Visions of Female Sexual Power and a World without Rape (Seal Press, 2019).

  22. Hilgert, N. The burden of consent: due process and the emerging adoption of the affirmative consent standard in sexual assault laws. Ariz. L. Rev. 58, 867 (2016).

    Google Scholar 

  23. Saks, E. R. Refusing Care: Forced Treatment and the Rights of the Mentally Ill (Univ. Chicago Press, 2010).

  24. Saks, E. R. The Center Cannot Hold: My Journey through Madness (Hachette, 2007).

  25. Wipond, R. Your Consent is Not Required: The Rise in Psychiatric Detentions, Forced Treatment, and Abusive Guardianships (BenBella Books, 2023).

  26. Zeavin, H. The Distance Cure: A History of Teletherapy (MIT Press, 2021).

  27. Organization Accreditation Standards Manual (American Association of Suicidology, 2006).

  28. National Suicide Prevention Lifeline: Policy for Helping Callers at Imminent Risk (National Suicide Prevention Lifeline, 2010).

  29. Testa, M. & West, S. G. Civil commitment in the United States. Psychiatry 7, 30 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Naghavi, M. et al. Global mortality from firearms, 1990–2016. JAMA 320, 792–814 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rivara, F. P., Studdert, D. M. & Wintemute, G. J. Firearm-related mortality: a global public health problem. JAMA 320, 764–765 (2018).

    Article  PubMed  Google Scholar 

  32. Ilic, I., Zivanovic Macuzic, I., Kocic, S. & Ilic, M. Worldwide suicide mortality trends by firearm (1990–2019): a joinpoint regression analysis. PLoS ONE 17, e0267817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Teplin, L. A. Keeping the peace: police discretion and mentally ill persons. Natl Inst. Justice J. 244, 8–15 (2000).

    Google Scholar 

  34. Pope, L. G., Patel, A., Watson, A. C. & Compton, M. T. Making decisions about calling 988 versus 911: understanding end-user views before the launch of 988. Psychiat. Serv. 75, 646–651 (2024).

    Article  Google Scholar 

  35. FTC v. BetterHelp Inc. FTC Complaint (Federal Trade Commission, 2023).

  36. Powell, A., Singh, P. & Torous, J. et al. The complexity of mental health app privacy policies: a potential barrier to privacy. JMIR mHealth uHealth 6, e9871 (2018).

    Article  Google Scholar 

  37. Iwaya, L. H., Babar, M. A., Rashid, A. & Wijayarathna, C. On the privacy of mental health apps: an empirical investigation and its implications for app development. Empir. Softw. Eng. 28, 2 (2023).

    Article  PubMed  Google Scholar 

  38. Kendall, T. NHS England position on serenity integrated mentoring (SIM) and similar models. https://www.england.nhs.uk/long-read/nhs-england-position-on-serenity-integrated-mentoring-and-similar-models/ (2023).

  39. Middleton, A., Gunn, J., Bassilios, B. & Pirkis, J. Systematic review of research into frequent callers to crisis helplines. J. Telemed. Telecare 20, 89–98 (2014).

    Article  PubMed  Google Scholar 

  40. Engrossed Substitute House Bill 1155: Washington My Health My Data Act. 68th Legislature, 2023 Regular Session, passed by the House 17 April 17 2023, passed by the Senate 5 April 2023 (State of Washington, 2023).

  41. Mubarak, E., Turner, V., Shuman, A. G., Firn, J. & Price, D. Promoting antiracist mental health crisis responses. AMA J. Ethics 24, 788–794 (2022).

    Article  Google Scholar 

  42. Rochford, B., Pendse, S., Kumar, N. & De Choudhury, M. Leveraging symptom search data to understand disparities in US mental health care: demographic analysis of search engine trace data. JMIR Ment. Health 10, e43253 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Borghouts, J. et al. Barriers to and facilitators of user engagement with digital mental health interventions: systematic review. J. Med. Internet Res. 23, e24387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Rola, I. et al. Can I opt out yet? GDPR and the global illusion of cookie control. In Proc. 2019 ACM Asia Conference on Computer and Communications Security 340–351 (ACM, 2019).

  45. Understanding the national data opt-out. NHS Digital https://digital.nhs.uk/services/national-data-opt-out/understanding-the-national-data-opt-out (2023).

  46. MacKay, D. Opt-out and consent. J. Med. Ethics 41, 832–835 (2015).

  47. Sastre-Buades, A., Alacreu-Crespo, A., Courtet, P., Baca-Garcia, E. & Barrigon, M. L. Decision-making in suicidal behavior: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 131, 642–662 (2021).

    Article  PubMed  Google Scholar 

  48. Sandler, R. D. Mobile medical ID: a resource for the off-duty clinician. J. Emerg. Med. 59, 141–142 (2020).

    Article  PubMed  Google Scholar 

  49. Gupta, M., Jain, R., Kumari, M. & Narula, G. In Applications of Blockchain in Healthcare (eds. Deka, G. C. & Namasudra, S.) 93–114 (Springer, 2021).

  50. Yue, X., Wang, H., Jin, D., Li, M. & Jiang, W. Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. J. Med. Syst. 40, 1–8 (2016).

    Article  Google Scholar 

  51. Sarkar, S., Banatre, J.-P., Rilling, L. & Morin, C. Towards enforcement of the eu gdpr: enabling data erasure. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) 222–229 (IEEE, 2018).

  52. Simon, G. E. et al. Assessing and minimizing re-identification risk in research data derived from health care records. eGEMs 7, 1–9 (2019).

  53. Kalkman, S. et al. Patients’ and public views and attitudes towards the sharing of health data for research: a narrative review of the empirical evidence. J. Med. Ethics 48, 3–13 (2022).

    Article  PubMed  Google Scholar 

  54. Sieberts, S. K. et al. Young people’s data governance preferences for their mental health data: MindKind study findings from India, South Africa, and the United Kingdom. PLoS ONE 18, e0279857 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Olavsrud, T. Data governance: a best practices framework for managing data assets. CIO (2021); https://www.cio.com/article/202183/what-is-data-governance-a-best-practices-framework-for-managing-data-assets.html

  56. Campbell, J. in On Our Own, Together: Peer Programs for People with Mental Illness (ed. Clay, S.) Ch. 2, 17–64 (Vanderbilt Univ. Press, 2005).

  57. Thrul, J., Kalb, L. G., Finan, P. H., Prager, Z. & Naslund, J. A. Web3 and digital mental health: opportunities to scale sustainable mental health promotion and peer support. Front. Psychiatry 13, 945830 (2022).

  58. Principles of Māori Data Sovereignty (Te Mana Raraunga: Māori Data Sovereignty Network, 2018).

  59. Feygin, Y. et al. A Data Dividend That Works: Steps toward Building an Equitable Data Economy (The Berggruen Institute, 2021).

  60. Porter, R. Foucault’s great confinement. Hist. Hum. Sci. 3, 47–54 (1990).

    Article  Google Scholar 

  61. Andrews, J. Case notes, case histories, and the patient’s experience of insanity at Gartnavel Royal Asylum, Glasgow, in the nineteenth century. Soc. Hist. Med. 11, 255–281 (1998).

    Article  PubMed  Google Scholar 

  62. Reid-Green, K. S. The history of census tabulation. Sci. Am. 260, 98–103 (1989).

    Article  Google Scholar 

  63. Hanganu-Bresch, C. & Berkenkotter, C. Diagnosing Madness: The Discursive Construction of the Psychiatric Patient, 1850–1920 (Univ. South Carolina Press, 2019).

  64. Wright, D. in The Palgrave Handbook of the History of Human Sciences (ed. McCallum, D.) 1253–1271 (Springer, 2022).

  65. Forret, J. “Deaf & dumb, blind, insane, or idiotic”: the census, slaves, and disability in the late antebellum south. J. South. Hist. 82, 503–548 (2016).

    Article  Google Scholar 

  66. Horwitz, A. V. & Grob, G. N. The checkered history of American psychiatric epidemiology. Milbank Q. 89, 628–657 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Deutsch, A. The first US census of the insane (1840) and its use as pro-slavery propaganda. Bull. Hist. Med. 15, 469–482 (1944).

    Google Scholar 

  68. Freud, S. Dora: An Analysis of a Case of Hysteria (Simon and Schuster, 1997).

  69. Lipton, E. L. The analyst’s use of clinical data, and other issues of confidentiality. J. Am. Psychoanal. Assoc. 39, 967–985 (1991).

    Article  PubMed  Google Scholar 

  70. Freud, S. & Strachey, A. Fragment of an Analysis of a Case of Hysteria (1905 [1901]) (Hogarth Press, 1962).

  71. Mosher, P. W. & Swire, P. P. The ethical and legal implications of Jaffee v Redmond and the HIPAA medical privacy rule for psychotherapy and general psychiatry. Psychiatr. Clin. 25, A575–A584 (2002).

    Google Scholar 

  72. Leach, M. M. & Harbin, J. J. Psychological ethics codes: a comparison of twenty-four countries. Int. J. Psychol. 32, 181–192 (1997).

    Article  PubMed  Google Scholar 

  73. Bondre, A., Pathare, S. & Naslund, J. A. Protecting mental health data privacy in India: the case of data linkage with Aadhaar. Glob. Health Sci. Prac. 9, 467–480 (2021).

    Article  Google Scholar 

  74. Lally, J., Samaniego, R. M. & Tully, J. Mental health legislation in the Philippines: Philippine Mental Health Act. BJPsych Int. 16, 65–67 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Regulation (EU) 2016/679 of the European Parliament and of the Council (European Parliament & Council of the European Union, 2016).

  76. Borecky, A., Thomsen, C. & Dubov, A. Reweighing the ethical tradeoffs in the involuntary hospitalization of suicidal patients. Am. J. Bioethics 19, 71–83 (2019).

    Article  Google Scholar 

  77. Beauchamp, T. L. & Childress, J. F. Principles of Biomedical Ethics (Oxford Univ. Press, 2001).

  78. The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research (US Department of Health, Education, and Welfare, National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 1978).

  79. Spellecy, R. & Busse, K. The history of human subjects research and rationale for institutional review board oversight. Nutr. Clin. Prac. 36, 560–567 (2021).

    Article  Google Scholar 

  80. Sannon, S. & Forte, A. Privacy research with marginalized groups: what we know, what’s needed, and what’s next. Proc. ACM Hum. Comput. Interact. 6, 1–33 (2022).

    Google Scholar 

  81. George, S., Duran, N. & Norris, K. A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am. J. Public Health 104, e16–e31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. McKim, C. Meaningful member-checking: a structured approach to member-checking. Am. J. Qual. Res. 7, 41–52 (2023).

    Google Scholar 

  83. Lincoln, Y. S. & Guba, E. G. Naturalistic Inquiry (Sage, 1985).

  84. Niinimäki, T., Heikkilä, M. A., Honkela, A. & Kaski, S. Representation transfer for differentially private drug sensitivity prediction. Bioinformatics 35, i218–i224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu, X., Zhou, P., Qiu, T. & Wu, D. O. Blockchain-enabled contextual online learning under local differential privacy for coronary heart disease diagnosis in mobile edge computing. IEEE J. Biomed. Health Inform. 24, 2177–2188 (2020).

    Article  Google Scholar 

  86. Lv, Z. & Piccialli, F. The security of medical data on internet based on differential privacy technology. ACM Trans. Internet Technol. 21, 1–18 (2021).

    Google Scholar 

  87. Roy, T. S., Basu, P., Priyanshu, A. & Naidu, R. Interpretability of fine-grained classification of sadness and depression. Preprint at https://arxiv.org/abs/2203.10432 (2022).

  88. Basu, P. et al. Benchmarking differential privacy and federated learning for BERT models. Preprint at https://arxiv.org/abs/2106.13973 (2021).

  89. Antunes, R. S., André da Costa, C., Küderle, A., Yari, I. A. & Eskofier, B. Federated learning for healthcare: systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol. 13, 1–23 (2022).

    Article  Google Scholar 

  90. Brauneck, A. et al. Federated machine learning in data-protection-compliant research. Nat. Mach. Intell. 5, 2–4 (2023).

    Article  Google Scholar 

  91. Dechand, S., Naiakshina, A., Danilova, A. & Smith, M. In encryption we don’t trust: the effect of end-to-end encryption to the masses on user perception. In 2019 IEEE European Symposium on Security and Privacy 401–415 (IEEE, 2019).

Download references

Acknowledgements

Part of this work was supported by funding from the National Institutes of Mental Health (R01MH117172, P50MH115838 and T32MH115882), from the National Science Foundation (1952085 and 2000782), from an unrestricted gift from Google, from the American Foundation for Suicide Prevention, and from the Microsoft AI for Accessibility Initiative. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of Google.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: S.R.P., L.S., N.K., M.D.C. and S.C. Drafting of the paper: S.R.P., L.S., N.K., M.D.C. and S.C. Critical revision of the paper for important intellectual content: S.R.P., L.S., N.K., M.D.C. and S.C.

Corresponding author

Correspondence to Sachin R. Pendse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Piers M. Gooding, Nicole Martinez-Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendse, S.R., Stapleton, L., Kumar, N. et al. Advancing a consent-forward paradigm for digital mental health data. Nat. Mental Health 2, 1298–1307 (2024). https://doi.org/10.1038/s44220-024-00330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-024-00330-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing