Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generalizable structure–function covariation predictive of antidepressant response revealed by target-oriented multimodal fusion

Abstract

Major depressive disorder (MDD) is a prevalent condition that profoundly impairs quality of life across diverse populations. Despite widespread use, current antidepressant and psychotherapeutic treatments exhibit limited efficacy and unsatisfactory response rates. Progress in developing effective therapies is hampered by the insufficiently understood heterogeneity of MDD and its elusive underlying mechanisms. Here, to address these challenges, we develop a novel machine learning framework that identifies structure–function covariation through target-oriented fusion of structural and functional connectivity, which robustly predicts individual-level antidepressant response (sertraline, R2 = 0.31; placebo, R2 = 0.22). Validation in an independent escitalopram-medicated MDD cohort confirms the biomarker’s generalizability (P = 0.01) and suggests an overlap of psychopharmacological signatures across selective serotonin reuptake inhibitors. Our models highlight the right precuneus as a common key region for both sertraline and placebo responses, with the right middle frontal gyrus and left fusiform gyrus specific to sertraline and the left inferior and middle frontal gyri to placebo. We also find that structural connectivity is more predictive of sertraline response, while functional connectivity better predicts placebo response. The framework further decomposes the overall predictive patterns into three constitutive network constellations (default-mode regulatory, affective and sensory processing), which exhibit distinct generalizable structure–function covariation and treatment-specific association with personality traits and behavioral/cognitive profiles. These findings provide unique insights to the structure–function covariation in patients with MDD, its association to the heterogeneity in antidepressant response and the dissection of the intricate MDD neuropsychopharmacology, paving the way for precision medicine and development of more targeted antidepressant therapeutics. Clinicaltrials.gov registration: Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC), NCT01407094.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of structure–function covariation predicting antidepressant and placebo responses.
Fig. 2: Multimodal neuroimaging biomarkers for sertraline-induced antidepressant response.
Fig. 3: Multimodal neuroimaging biomarkers for placebo-induced antidepressant response.
Fig. 4: Generalization analysis of multimodal biomarkers for sertraline and placebo response in the CAN-BIND-1 cohort.
Fig. 5: Network constellations in multimodal biomarkers for sertraline and placebo response.

Similar content being viewed by others

Data availability

The EMBARC cohort is publicly available through the National Institute of Mental Health Data Archive (NDA) (https://nda.nih.gov/edit_collection.html?id=2199). The CAN-BIND-1 cohort is available under a data use agreement with Brain-CODE, based at the Ontario Brain Institute (https://www.braincode.ca/content/canadian-biomarker-integration-network-depression-can-bind-0).

Code availability

All analyses were conducted in MATLAB (version R2022b), and the code is available via our GitHub repository at https://github.com/Xiaoyu-Tong/TargetOrientedMultimodalFusion--AntidepressantResponse.

References

  1. Lai, C.-H. Promising neuroimaging biomarkers in depression. Psychiatry Investig. 16, 662 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kambeitz, J. et al. Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies. Biol. Psychiatry 82, 330–338 (2017).

    Article  PubMed  Google Scholar 

  3. Buch, A. M. & Liston, C. Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics. Neuropsychopharmacology 46, 156–175 (2021).

    Article  PubMed  Google Scholar 

  4. Kraus, C., Kadriu, B., Lanzenberger, R., Zarate, C. A. Jr & Kasper, S. Prognosis and improved outcomes in major depression: a review. Transl. Psychiatry 9, 127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Runia, N. et al. The neurobiology of treatment-resistant depression: a systematic review of neuroimaging studies. Neurosci. Biobehav. Rev. 132, 433–448 (2022).

    Article  PubMed  Google Scholar 

  6. Enneking, V., Leehr, E. J., Dannlowski, U. & Redlich, R. Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies. Psychol. Med. 50, 187–209 (2020).

    Article  PubMed  Google Scholar 

  7. Fu, C. H. et al. Neuroanatomical dimensions in medication-free individuals with major depressive disorder and treatment response to SSRI antidepressant medications or placebo. Nat. Ment. Health 2, 164–176 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Widge, A. S. et al. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am. J. Psychiatry 176, 44–56 (2019).

    Article  PubMed  Google Scholar 

  9. Tozzi, L., Goldstein-Piekarski, A. N., Korgaonkar, M. S. & Williams, L. M. Connectivity of the cognitive control network during response inhibition as a predictive and response biomarker in major depression: evidence from a randomized clinical trial. Biol. Psychiatry 87, 462–472 (2020).

    Article  PubMed  Google Scholar 

  10. Wu, W. et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat. Biotechnol. 38, 439–447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao, K. et al. Individualized fMRI connectivity defines signatures of antidepressant and placebo responses in major depression. Mol. Psychiatry 28, 2490–2499 (2023).

    Article  PubMed  Google Scholar 

  12. Geddes, J. R. et al. Relapse prevention with antidepressant drug treatment in depressive disorders: a systematic review. Lancet 361, 653–661 (2003).

    Article  PubMed  Google Scholar 

  13. Kanai, T. et al. Time to recurrence after recovery from major depressive episodes and its predictors. Psychol. Med. 33, 839–845 (2003).

    Article  PubMed  Google Scholar 

  14. Breedvelt, J. J. F. et al. An individual participant data meta-analysis of psychological interventions for preventing depression relapse. Nat. Ment. Health 2, 154–163 (2024).

    Article  Google Scholar 

  15. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fotiadis, P. et al. Structure–function coupling in macroscale human brain networks. Nat. Rev. Neurosci. 25, 688–704 (2024).

    Article  PubMed  Google Scholar 

  17. Sui, J., Adali, T., Yu, Q., Chen, J. & Calhoun, V. D. A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204, 68–81 (2012).

    Article  PubMed  Google Scholar 

  18. Zhang, Y.-D. et al. Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf. Fusion 64, 149–187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tulay, E. E., Metin, B., Tarhan, N. & Arıkan, M. K. Multimodal neuroimaging: basic concepts and classification of neuropsychiatric diseases. Clin. EEG Neurosci. 50, 20–33 (2019).

    Article  PubMed  Google Scholar 

  20. Maglanoc, L. A. et al. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Hum. Brain Mapp. 41, 241–255 (2020).

    Article  PubMed  Google Scholar 

  21. Burke, M. J. et al. Placebo effects and neuromodulation for depression: a meta-analysis and evaluation of shared mechanisms. Mol. Psychiatry 27, 1658–1666 (2022).

    Article  PubMed  Google Scholar 

  22. Pecina, M., Heffernan, J., Wilson, J., Zubieta, J.-K. & Dombrovski, A. Prefrontal expectancy and reinforcement-driven antidepressant placebo effects. Transl. Psychiatry 8, 222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lii, T. R. et al. Randomized trial of ketamine masked by surgical anesthesia in patients with depression. Nat. Ment. Health 1, 876–886 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Savarese, P., Silva, H. & Maire, M. Winning the lottery with continuous sparsification. Adv. Neural Inf. Process. Syst. 33, 11380–11390 (2020).

    Google Scholar 

  25. Trivedi, M. H. et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design. J. Psychiatr. Res. 78, 11–23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2017).

    Article  PubMed Central  Google Scholar 

  27. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Choi, E. Y., Yeo, B. T. & Buckner, R. L. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242–2263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y.-R. et al. Personality traits and brain health: a large prospective cohort study. Nat. Ment. Health 1, 722–735 (2023).

    Article  Google Scholar 

  30. Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A. & Williams, L. M. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol. Psychiatry 25, 1537–1549 (2020).

    Article  PubMed  Google Scholar 

  31. Williams, L. M., Debattista, C., Duchemin, A., Schatzberg, A. F. & Nemeroff, C. B. Childhood trauma predicts antidepressant response in adults with major depression: data from the randomized international study to predict optimized treatment for depression. Transl. Psychiatry 6, e799 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Damsa, C. et al. ‘Dopamine-dependent' side effects of selective serotonin reuptake inhibitors: a clinical review. J. Clin. Psychiatry 65, 1064–1068 (2004).

    Article  PubMed  Google Scholar 

  33. Xue, W. et al. Molecular mechanism for the allosteric inhibition of the human serotonin transporter by antidepressant escitalopram. ACS Chem. Neurosci. 13, 340–351 (2022).

    Article  PubMed  Google Scholar 

  34. Sui, J. et al. In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia. Biol. Psychiatry 78, 794–804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Foti, D., Carlson, J. M., Sauder, C. L. & Proudfit, G. H. Reward dysfunction in major depression: multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage 101, 50–58 (2014).

    Article  PubMed  Google Scholar 

  36. Scheepens, D. S. et al. The link between structural and functional brain abnormalities in depression: a systematic review of multimodal neuroimaging studies. Front. Psychiatry 11, 485 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnston, J. A. et al. Multimodal neuroimaging of frontolimbic structure and function associated with suicide attempts in adolescents and young adults with bipolar disorder. Am. J. Psychiatry 174, 667–675 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shi, J., Zheng, X., Li, Y., Zhang, Q. & Ying, S. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inform. 22, 173–183 (2017).

    Article  PubMed  Google Scholar 

  39. Liu, S. et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62, 1132–1140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lei, D. et al. Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual. Hum. Brain Mapp. 41, 1119–1135 (2020).

    Article  PubMed  Google Scholar 

  41. Weigand, A. et al. Predicting antidepressant effects of ketamine: the role of the pregenual anterior cingulate cortex as a multimodal neuroimaging biomarker. Int. J. Neuropsychopharmacol. 25, 1003–1013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tong, X. et al. Symptom dimensions of resting-state electroencephalographic functional connectivity in autism. Nat. Ment. Health 2, 287–298 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jiang, X. et al. Connectome analysis of functional and structural hemispheric brain networks in major depressive disorder. Transl. Psychiatry 9, 136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, X. et al. Distinct MRI-based functional and structural connectivity for antidepressant response prediction in major depressive disorder. Clin. Neurophysiol. 160, 19–27 (2024).

    Article  PubMed  Google Scholar 

  45. Kato, M. et al. Discontinuation of antidepressants after remission with antidepressant medication in major depressive disorder: a systematic review and meta-analysis. Mol. Psychiatry 26, 118–133 (2021).

    Article  PubMed  Google Scholar 

  46. Hansen, R. et al. Meta-analysis of major depressive disorder relapse and recurrence with second-generation antidepressants. Psychiatr. Serv. 59, 1121–1130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Williams, N., Simpson, A. N., Simpson, K. & Nahas, Z. Relapse rates with long-term antidepressant drug therapy: a meta-analysis. Hum. Psychopharmacol. 24, 401–408 (2009).

    Article  PubMed  Google Scholar 

  48. Cheng, W. et al. Functional connectivity of the precuneus in unmedicated patients with depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 1040–1049 (2018).

    PubMed  Google Scholar 

  49. Tong, X. et al. Individual deviations from normative electroencephalographic connectivity predict antidepressant response. J. Affect. Disord. 351, 220–220 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Buchsbaum, M. S. et al. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol. Psychiatry 41, 15–22 (1997).

    Article  PubMed  Google Scholar 

  51. Cooper, C. M. et al. Cerebral blood perfusion predicts response to sertraline versus placebo for major depressive disorder in the EMBARC trial. eClinicalMedicine 10, 32–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mayberg, H. S. et al. The functional neuroanatomy of the placebo effect. Am. J. Psychiatry 159, 728–737 (2002).

    Article  PubMed  Google Scholar 

  53. Rolle, C. E. et al. Cortical connectivity moderators of antidepressant vs placebo treatment response in major depressive disorder: secondary analysis of a randomized clinical trial. JAMA Psychiatry 77, 397–408 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gabbay, V. et al. Striatum-based circuitry of adolescent depression and anhedonia. J. Am. Acad. Child Adolesc. Psychiatry 52, 628–641. e613 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Avissar, M. et al. Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS. Brain Stimul. 10, 919–925 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Otte, C. et al. Major depressive disorder. Nat. Rev. Dis. Primers 2, 1–20 (2016).

    Article  Google Scholar 

  57. Bhatia, K. D., Henderson, L. A., Hsu, E. & Yim, M. Reduced integrity of the uncinate fasciculus and cingulum in depression: a stem-by-stem analysis. J. Affect. Disord. 235, 220–228 (2018).

    Article  PubMed  Google Scholar 

  58. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li, K. et al. Aberrant resting-state functional connectivity in MDD and the antidepressant treatment effect—a 6-month follow-up study. Brain Sci. 13, 705 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mayberg, H. S. et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol. Psychiatry 48, 830–843 (2000).

    Article  PubMed  Google Scholar 

  61. Roberts, A. C. The importance of serotonin for orbitofrontal function. Biol. Psychiatry 69, 1185–1191 (2011).

    Article  PubMed  Google Scholar 

  62. Hornboll, B. et al. Acute serotonin 2A receptor blocking alters the processing of fearful faces in the orbitofrontal cortex and amygdala. J. Psychopharmacol. 27, 903–914 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Preller, K. H. et al. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc. Natl Acad. Sci. USA 113, 5119–5124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ray, D., Bezmaternykh, D., Mel’nikov, M., Friston, K. J. & Das, M. Altered effective connectivity in sensorimotor cortices is a signature of severity and clinical course in depression. Proc. Natl Acad. Sci. USA 118, e2105730118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wüthrich, F. et al. The neural signature of psychomotor disturbance in depression. Mol. Psychiatry 29, 317–326 (2024).

    Article  PubMed  Google Scholar 

  66. Ding, Y. et al. Disrupted cerebellar-default mode network functional connectivity in major depressive disorder with gastrointestinal symptoms. Front. Cell. Neurosci. 16, 833592 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Scalabrini, A. et al. Abnormally slow dynamics in occipital cortex of depression. J. Affect. Disord. 374, 523–530 (2025).

    Article  PubMed  Google Scholar 

  68. Zhu, M. et al. Over-integration of visual network in major depressive disorder and its association with gene expression profiles. Transl. Psychiatry 15, 86 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Harmer, C. J., Duman, R. S. & Cowen, P. J. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 4, 409–418 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. First, M. B. Structural Clinical Interview for DSM-IV Axis I Disorders (Biometrics Research Department, 1997).

  71. Nogovitsyn, N. et al. Hippocampal tail volume as a predictive biomarker of antidepressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology 45, 283–291 (2020).

    Article  PubMed  Google Scholar 

  72. Lam, R. W. et al. Discovering biomarkers for antidepressant response: protocol from the Canadian Biomarker Integration Network in Depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry 16, 1–13 (2016).

    Article  Google Scholar 

  73. Leucht, S., Fennema, H., Engel, R. R., Kaspers-Janssen, M. & Szegedi, A. Translating the HAM-D into the MADRS and vice versa with equipercentile linking. J. Affect. Disord. 226, 326–331 (2018).

    Article  PubMed  Google Scholar 

  74. Raichle, M. E. & Snyder, A. Z. A default mode of brain function: a brief history of an evolving idea. NeuroImage 37, 1083–1090 (2007).

    Article  PubMed  Google Scholar 

  75. MacQueen, G. M. et al. The Canadian Biomarker Integration Network in Depression (CAN-BIND): magnetic resonance imaging protocols. J. Psychiatry Neurosci. 44, 223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394–406 (2016).

    Article  PubMed  Google Scholar 

  77. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016).

    Article  PubMed  Google Scholar 

  79. Andersson, J. L. R., Graham, M. S., Zsoldos, E. & Sotiropoulos, S. N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage 141, 556–572 (2016).

    Article  PubMed  Google Scholar 

  80. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  PubMed  Google Scholar 

  81. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    Article  PubMed  Google Scholar 

  82. Zhang, Y., Brady, J. M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2002).

    Article  Google Scholar 

  83. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  84. Pruim, R. H. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112, 267–277 (2015).

    Article  PubMed  Google Scholar 

  85. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  86. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage 76, 439–441 (2013).

    Article  PubMed  Google Scholar 

  87. Yeh, F. C., Wedeen, V. J. & Tseng, W. Y. Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29, 1626–1635 (2010).

    Article  PubMed  Google Scholar 

  88. Yeh, F. C., Verstynen, T. D., Wang, Y., Fernandez-Miranda, J. C. & Tseng, W. Y. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8, e80713 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yeh, F. C. Shape analysis of the human association pathways. NeuroImage 223, 117329 (2020).

    Article  PubMed  Google Scholar 

  90. Thomas Yeo, B. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed Central  Google Scholar 

  91. Weinberg, R. & Patel, Y. C. Simulated intraclass correlation coefficients and their z transforms. J. Stat. Comput. Simul. 13, 13–26 (1981).

    Article  Google Scholar 

  92. Fouladi, R. T. & Steiger, J. H. The Fisher transform of the Pearson product moment correlation coefficient and its square: cumulants, moments, and applications. Commun. Stat. Simul. Comput. 37, 928–944 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01MH129694 to Y.Z. and philanthropic funding and grants from the One Mind-Baszucki Brain Research Fund, the SEAL Future Foundation and the Brain and Behavior Research Foundation to G.A.F. The funders had no role in the design and conduct of the study, and the collection, management, analysis and interpretation of the data, nor were they involved in the decision to submit the paper for publication. We would also like to acknowledge the individuals and organizations that have made data available for this research, including CAN-BIND, the Ontario Brain Institute, the Brain-CODE platform and the government of Ontario.

Author information

Authors and Affiliations

Authors

Contributions

X.T. conceptualized and designed the work, wrote the code, analyzed and interpreted the data and drafted and revised the paper. K.Z. preprocessed and interpreted the data and revised the paper. G.A.F., H.X. and N.B.C. interpreted the data, refined the design of the work and revised the paper. C.J.K., D.J.O., Y.S., C.B.N., M.T. and A.E. interpreted the data and revised the paper. Y.Z. conceptualized and designed the work, oversaw the analysis and interpretation of the data and revised the paper.

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Competing interests

G.A.F. received monetary compensation for consulting work for SynapseBio AI and owns equity in Alto Neuroscience. C.J.K. reports equity from Alto Neuroscience. C.B.N. is supported by the National Institutes of Health, the National Institute of Mental Health, the Texas Child Mental Health Consortium and the National Institute of Alcohol Abuse and Alcoholism. C.B.N. is a consultant for ANeuroTech, Abbott Laboratories, Engrail Therapeutics, Clexio Biosciences Ltd., Sero (previously Galen Mental Health LLC), Goodcap Pharmaceuticals, Sage Therapeutics, Senseye Inc., Precisement Health, Autobahn Therapeutics Inc., EMA Wellness, Denovo Biopharma LLC, Alvogen, Acadia Pharmaceuticals, Inc., Reunion Neuroscience, Kivira Health, Inc., Wave Neuroscience, Patient Square Capital LP, Invisalert Solutions Inc. and Neurocrine Biosciences, LLC. C.B.N. owns the following patents: method and devices for transdermal delivery of lithium (US patent no. 6,375,990B1), method of assessing antidepressant drug therapy via transport inhibition of monoamine neurotransmitters by ex vivo assay (US patent no. 7,148,027B2) and compounds, compositions, methods of synthesis and methods of treatment (CRF receptor binding ligand) (US patent no. 8,551, 996 B2). C.B.N. owns stock in Corcept Therapeutics Company, EMA Wellness, Precisement Health, Relmada Therapeutics Inc., Signant Health, Galen Mental Health LLC, Kivira Health, Inc., Denovo Biopharma LLC and Senseye Inc. A.E. reports salary and equity from Alto Neuroscience and equity in Mindstrong Health. The other authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Data driven dimensionality and dissimilarity of dimension compositions of the latent space.

As the degree of sparsity increases, the latent space dimensions derived from both the L0-regularized (a) and L1-regularized (b) framework first exhibit a shrinkage of degree of freedom (decrease in number of dimensions), demonstrating the data driven dimensionality property that the framework can judge on its own whether a feature is adequately informative to be included in the sparse latent space. However, while the latent dimensions derived with L0-regularization show decent dissimilarity with each other (as quantified by their pairwise cosine similarity), the dimensions derived with L1-regularization gradually converge. After the dimensionality reaches a relative stable number, the L0-regularized framework further enhance the degree of orthogonality across dimensions, while the L1-regularized counterpart further aggregates information from dimensions and emphasizes the dominant dimension. Together, the differences in the properties of latent space demonstrate the unique advantage of L0-regularized framework over its L1-regularized counterpart — the L0-regularization imposes penalty on the occurrence of features in dimensions, especially the features with contribution to multiple dimensions, therefore yielding distinct dimensions with decent dissimilarity with each other. The sparsity parameters (\({\lambda }_{{fusion}}\) and \({\lambda }_{{pred}}\)) are harmoniously adjusted and kept same for L0- and L1-regularization. The colormap of latent space shows the weights of informative connectivity features with respect to each of the latent dimensions. The blankness in the rightmost part of latent space is the eliminated dimensions that are automatically set to zero vectors by the framework due to their inadequate informativeness. The latent space of one cross-validation fold is shown for each regularization paradigm as the representative example.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Zhao, K., Fonzo, G.A. et al. Generalizable structure–function covariation predictive of antidepressant response revealed by target-oriented multimodal fusion. Nat. Mental Health 4, 85–101 (2026). https://doi.org/10.1038/s44220-025-00541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00541-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing