Abstract
Reward-guided behaviors, essential for survival and adaptation, exhibit both conserved and species-specific features across humans and other animals. Translating findings across species is often hindered by limited cross-species reliability in measurements and uncertain translational validity regarding functional or mechanistic relevance. This Perspective proposes a multi-dimensional transfer learning framework that integrates artificial intelligence (AI) to enhance cross-species research of reward-guided behaviors. By leveraging AI techniques, our framework connects behavioral neuroscience insights from animal models, especially land-based mammals, with functional outcomes in humans, enabling concept- and parameter-level transfer to identify universal principles, clarify mechanisms and optimize experimental paradigms. Using example expression components of behaviors, including locomotion trajectories and facial expressions, we highlight how multi-dimensional transfer learning can reveal conserved neural circuits while accounting for species-specific variations and contextual dynamics. This AI-powered framework offers a promising path to deepen our understanding of reward-guided behaviors and their relevance to mental health disorders.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$79.00 per year
only $6.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Fliessbach, K. et al. Social comparison affects reward-related brain activity in the human ventral striatum. Science 318, 1305–1308 (2007).
Bore, M. C. et al. Common and separable neural alterations in adult and adolescent depression-evidence from neuroimaging meta-analyses. Neurosci. Biobehav. Rev. 164, 105835 (2024).
Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L. & Platt, M. L. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42, 1931–1939 (2017).
Rudebeck, P. H. & Izquierdo, A. Foraging with the frontal cortex: a cross-species evaluation of reward-guided behavior. Neuropsychopharmacology 47, 134–146 (2022).
Murray, E. A., O’Doherty, J. P. & Schoenbaum, G. What we know and do not know about the functions of the orbitofrontal cortex after 20 Years of cross-species studies. J. Neurosci. 27, 8166–8169 (2007).
Monosov, I. E. Curiosity: primate neural circuits for novelty and information seeking. Nat. Rev. Neurosci. 25, 195–208 (2024).
Lewis, A. A non-adaptationist hypothesis of play behaviour. J. Physiol. 602, 2433–2453 (2024).
Elias, L. J. & Abdus-Saboor, I. Bridging skin, brain and behavior to understand pleasurable social touch. Curr. Opin. Neurobiol. 73, 102527 (2022).
Schiller, D. et al. The human affectome. Neurosci. Biobehav. Rev. 158, 105450 (2024).
Lin, F. V., Zuo, Y., Conwell, Y. & Wang, K. H. New horizons in emotional well-being and brain aging: potential lessons from cross-species research. Int. J. Geriatr. Psychiatry 38, e5936 (2023).
Ferenczi, E. A. et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351, aac9698 (2016).
Chandel, A. et al. Thermal infrared directs host-seeking behaviour in Aedes aegypti mosquitoes. Nature 633, 615–623 (2024).
Dunbar, R. I. The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci. Biobehav. Rev. 34, 260–268 (2010).
Barron, H. C., Mars, R. B., Dupret, D., Lerch, J. P. & Sampaio-Baptista, C. Cross-species neuroscience: closing the explanatory gap. Philos. Trans. R. Soc. B Biol. Sci. 376, 20190633 (2020).
Chen, Y. C. I. et al. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis and behavioral data. Magn. Reson. Med. 38, 389–398 (1997).
Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
Zürcher, N. R. et al. A simultaneous [11C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl. Psychiatry 11, 33 (2021).
Kutlu, M. G. et al. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr. Biol. 31, 4748–4761.e8 (2021).
Zachry, J. E. et al. D1 and D2 medium spiny neurons in the nucleus accumbens core have distinct and valence-independent roles in learning. Neuron 112, 835–849.e7 (2024).
Ott, T. & Nieder, A. Dopamine and cognitive control in prefrontal cortex. Trends Cogn. Sci. 23, 213–234 (2019).
De Neve, J.-E. & Oswald, A. J. Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects. Proc. Natl Acad. Sci. USA 109, 19953–19958 (2012).
Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).
Box-Steffensmeier, J. M. et al. The future of human behaviour research. Nat. Hum. Behav. 6, 15–24 (2022).
Meng, J. AI emerges as the frontier in behavioral science. Proc. Natl Acad. Sci. USA 121, e2401336121 (2024).
Zhao, G., Li, Y. & Xu, Q. From emotion AI to cognitive AI. Int. J. Netw. Dyn. Intell 1, 65–72 (2022).
Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).
Goodwin, N. L. et al. Simple Behavioral Analysis (SimBA) as a platform for explainable machine learning in behavioral neuroscience. Nat. Neurosci. 27, 1411–1424 (2024).
Fu, E. Y., Huang, M. X., Leong, H. V. & Ngai, G. Cross-species learning: a low-cost approach to learning human fight from animal fight. In Proc. ACM International Conference on Multimedia 320–327 (ACM, 2018).
Maekawa, T. et al. Cross-species behavior analysis with attention-based domain-adversarial deep neural networks. Nat. Commun. 12, 5519 (2021).
Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).
Berridge, K. C. Reward learning: reinforcement, incentives and expectations. Psychol. Learn. Motiv. 40, 223–278 (2000).
Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. J. Pers. Soc. Psychol. 67, 319–333 (1994).
Ainslie, G. Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol. Bull. 82, 463–496 (1975).
Li, S. & Deng, W. Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. 13, 1195–1215 (2020).
Kong, Y. & Fu, Y. Human action recognition and prediction: a survey. Int. J. Comput. Vis. 130, 1366–1401 (2022).
Can, Y. S., Mahesh, B. & André, E. Approaches, applications, and challenges in physiological emotion recognition—a tutorial overview. Proc. IEEE 111, 1287–1313 (2023).
Lindgren, H. Emerging roles and relationships among humans and interactive AI systems. Int. J. Human Comput. Interact. 41, 10595–10617 (2024).
Niedenthal, P. M., Mermillod, M., Maringer, M. & Hess, U. The Simulation of Smiles (SIMS) model: embodied simulation and the meaning of facial expression. Behav. Brain Sci. 33, 417–433 (2010).
Cowen, A. S. & Keltner, D. What the face displays: mapping 28 emotions conveyed by naturalistic expression. Am. Psychol. 75, 349–364 (2020).
Cowen, A. S. et al. Sixteen facial expressions occur in similar contexts worldwide. Nature 589, 251–257 (2021).
Wang, Y. et al. Vision-based estimation of fatigue and engagement in cognitive training sessions. Artif. Intell. Med. 154, 102923 (2024).
Awais, M. et al. A hybrid DCNN-SVM model for classifying neonatal sleep and wake states based on facial expressions in video. IEEE J. Biomed. Health Inform. 25, 1441–1449 (2021).
Savchenko, A. V., Savchenko, L. V. & Makarov, I. Classifying emotions and engagement in online learning based on a single facial expression recognition neural network. IEEE Trans. Affect. Comput. 13, 2132–2143 (2022).
Kim, E., Bryant, D., Srikanth, D. & Howard, A. Age bias in emotion detection: an analysis of facial emotion recognition performance on young, middle-aged, and older adults. In Proc. AAAI/ACM Conference on AI, Ethics and Society 638–644 (ACM, 2021).
Li, Y., Wei, J., Liu, Y., Kauttonen, J. & Zhao, G. Deep learning for micro-expression recognition: a survey. IEEE Trans. Affect. Comput. 13, 2028–2046 (2022).
Veltmeijer, E. A., Gerritsen, C. & Hindriks, K. V. Automatic emotion recognition for groups: a review. IEEE Trans. Affect. Comput. 14, 89–107 (2023).
Walawalkar, D. & Garrido, P. VideoClusterNet: self-supervised and adaptive face clustering for videos. In Proc. European Conference on Computer Vision 377–396 (Springer, 2024).
Cyders, M. A. & Smith, G. T. Emotion-based dispositions to rash action: positive and negative urgency. Psychol. Bull. 134, 807–828 (2008).
Chou, K.-P., Wilson, R. C. & Smith, R. The influence of anxiety on exploration: a review of computational modeling studies. Neurosci. Biobehav. Rev. 167, 105940 (2024).
Song, S. et al. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. J. Neuroeng. Rehabil. 18, 126 (2021).
Endo, M. et al. Data-driven discovery of movement-linked heterogeneity in neurodegenerative diseases. Nat. Mach. Intell. 6, 1034–1045 (2024).
Liu, X. et al. iMiGUE: an identity-free video dataset for micro-gesture understanding and emotion analysis. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 10631–10642 (IEEE, 2021).
Chen, H., Shi, H., Liu, X., Li, X. & Zhao, G. SMG: a micro-gesture dataset towards spontaneous body gestures for emotional stress state analysis. Int. J. Comput. Vis. 131, 1346–1366 (2023).
Logge, W. B., Morley, K. C., Haber, P. S. & Baillie, A. J. Impaired decision-making and skin conductance responses are associated with reward and punishment sensitivity in individuals with severe alcohol use disorder. Neuropsychobiology 82, 117–129 (2023).
Fouragnan, E. F. et al. Timing along the cardiac cycle modulates neural signals of reward-based learning. Nat. Commun. 15, 2976 (2024).
Lin, F. V. & Heffner, K. L. Autonomic nervous system flexibility for understanding brain aging. Ageing Res. Rev. 90, 102016 (2023).
Sun, Z. & Li, X. Contrast-Phys+: unsupervised and weakly-supervised video-based remote physiological measurement via spatiotemporal contrast. IEEE Trans. Pattern Anal. Mach. Intell. 46, 5835–5851 (2024).
Lu, Y. & Zhong, S. Contactless real-time heart rate predicts the performance of elite athletes: evidence from Tokyo 2020 Olympic archery competition. Psychol. Sci. 34, 384–393 (2023).
Poremba, A., Bigelow, J. & Rossi, B. Processing of communication sounds: contributions of learning, memory and experience. Hear. Res. 305, 31–44 (2013).
Massaccesi, C., Korb, S., Skoluda, N., Nater, U. M. & Silani, G. Effects of appetitive and aversive motivational states on wanting and liking of interpersonal touch. Neuroscience 464, 12–25 (2021).
Zhang, Z., Cheng, H. & Yang, T. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning. PLoS Comput. Biol. 16, e1008342 (2020).
Lian, Z. et al. AffectGPT: a new dataset, model and benchmark for emotion understanding with multimodal large language models. In Proc. International Conference on Machine Learning 267, 36993–37014 (PMLR, 2025).
Mihalcea, R. et al. How developments in natural language processing help us in understanding human behaviour. Nat. Hum. Behav. 8, 1877–1889 (2024).
Bain, M. et al. Automated audiovisual behavior recognition in wild primates. Sci. Adv. 7, eabi4883 (2021).
Maekawa, T. et al. Deep learning-assisted comparative analysis of animal trajectories with DeepHL. Nat. Commun. 11, 5316 (2020).
Kain, J. et al. Leg-tracking and automated behavioural classification in Drosophila. Nat. Commun. 4, 1910 (2013).
Chen, J. et al. MammalNet: a large-scale video benchmark for mammal recognition and behavior understanding. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 13052–13061 (IEEE, 2023).
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de Polavieja, G. G. idtracker.ai: tracking all individuals in small or large collectives of unmarked animals. Nat. Methods 16, 179–182 (2019).
Couzin, I. D. & Heins, C. Emerging technologies for behavioral research in changing environments. Trends Ecol. Evol. 38, 346–354 (2023).
Stijovic, A. et al. Defining social reward: a systematic review of human and animal studies. Psychol. Bull. 150, 1472–1509 (2024).
Khan, M. H. et al. AnimalWeb: a large-scale hierarchical dataset of annotated animal faces. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 6939–6948 (IEEE, 2020).
Boneh-Shitrit, T. et al. Explainable automated recognition of emotional states from canine facial expressions: the case of positive anticipation and frustration. Sci. Rep. 12, 22611 (2022).
Carmo, L. G., Werner, L. C., Michelotto, P. V. Jr & Daros, R. R. Horse behavior and facial movements in relation to food rewards. PLoS ONE 18, e0286045 (2023).
Syeda, A. et al. Facemap: a framework for modeling neural activity based on orofacial tracking. Nat. Neurosci. 27, 187–195 (2024).
Pessanha, F., McLennan, K. & Mahmoud, M. Towards automatic monitoring of disease progression in sheep: a hierarchical model for sheep facial expressions analysis from video. In Proc. IEEE International Conference on Automatic Face and Gesture Recognition 387–393 (IEEE, 2020).
Pessanha, F., Salah, A. A., van Loon, T. & Veltkamp, R. Facial image-based automatic assessment of equine pain. IEEE Trans. Affect. Comput. 14, 2064–2076 (2022).
Martvel, G., Shimshoni, I. & Zamansky, A. Automated detection of cat facial landmarks. Int. J. Comput. Vis. 132, 3103–3118 (2024).
Waidmann, E. N., Koyano, K. W., Hong, J. J., Russ, B. E. & Leopold, D. A. Local features drive identity responses in macaque anterior face patches. Nat. Commun. 13, 5592 (2022).
Yao, Y. et al. OpenMonkeyChallenge: dataset and benchmark challenges for pose estimation of non-human primates. Int. J. Comput. Vis. 131, 243–258 (2023).
Shooter, M., Malleson, C. & Hilton, A. SyDog-Video: a synthetic dog video dataset for temporal pose estimation. Int. J. Comput. Vis. 132, 1986–2002 (2024).
Marks, M. et al. Deep-learning-based identification, tracking, pose estimation and behaviour classification of interacting primates and mice in complex environments. Nat. Mach. Intell. 4, 331–340 (2022).
Shi, X., Yang, C., Xia, X. & Chai, X. Deep cross-species feature learning for animal face recognition via residual interspecies equivariant network. In Proc. European Conference on Computer Vision 667–682 (Springer, 2020).
Zhang, H. et al. Equivalent processing of facial expression and identity by macaque visual system and task-optimized neural network. NeuroImage 273, 120067 (2023).
Kwon, J. et al. SUBTLE: an unsupervised platform with temporal link embedding that maps animal behavior. Int. J. Comput. Vis. 132, 4589–4615 (2024).
Shaw, L., Wang, K. H. & Mitchell, J. Fast prediction in marmoset reach-to-grasp movements for dynamic prey. Curr. Biol. 33, 2557–2565.e4 (2023).
Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).
Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16, 117–125 (2019).
Dunn, T. W. et al. Geometric deep learning enables 3D kinematic profiling across species and environments. Nat. Methods 18, 564–573 (2021).
Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).
Broomé, S. et al. Going deeper than tracking: a survey of computer-vision based recognition of animal pain and emotions. Int. J. Comput. Vis. 131, 572–590 (2023).
Kaneko, T. et al. Deciphering social traits and pathophysiological conditions from natural behaviors in common marmosets. Curr. Biol. 34, 2854–2867.e5 (2024).
Cai, X. et al. Dopamine dynamics are dispensable for movement but promote reward responses. Nature 635, 406–414 (2024).
Peysakhovich, B. et al. Primate superior colliculus is causally engaged in abstract higher-order cognition. Nat. Neurosci. 27, 1999–2008 (2024).
Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023).
Henry, B. L. et al. Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci. Biobehav. Rev. 34, 1296–1306 (2010).
Fan, S., Monte, O. D., Nair, A. R., Fagan, N. A. & Chang, S. W. C. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. Neuron 112, 2631–2644.e6 (2024).
Skora, L., Livermore, J. & Roelofs, K. The functional role of cardiac activity in perception and action. Neurosci. Biobehav. Rev. 137, 104655 (2022).
Grujic, N., Polania, R. & Burdakov, D. Neurobehavioral meaning of pupil size. Neuron 112, 3381–3395 (2024).
Chang, S. W. C. et al. Neuroethology of primate social behavior. Proc. Natl Acad. Sci. USA 110, 10387–10394 (2013).
McFarland, R. et al. Social integration confers thermal benefits in a gregarious primate. J. Anim. Ecol. 84, 871–878 (2015).
Mitchell, J. F., Wang, K. H., Batista, A. P. & Miller, C. T. An ethologically motivated neurobiology of primate visually-guided reach-to-grasp behavior. Curr. Opin. Neurobiol. 86, 102872 (2024).
Gábor, A. et al. Social relationship-dependent neural response to speech in dogs. Neuroimage 243, 118480 (2021).
Fonseca, A. H., Santana, G. M., Bosque Ortiz, G. M., Bampi, S. & Dietrich, M. O. Analysis of ultrasonic vocalizations from mice using computer vision and machine learning. eLife 10, e59161 (2021).
Jung, D.-H. et al. Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering. Animals 11, 357 (2021).
Zeng, D., Hong, S., Li, S., Shen, Q. & Tang, B. Data-scarce animal face alignment via bi-directional cross-species knowledge transfer. In Proc. ACM International Conference on Multimedia 8475–8485 (ACM, 2023).
Ekman, P., Friesen, W. V. & Hager, J. C. Facial Action Coding System: The Manual (Research Nexus, 2002).
Parr, L. A., Waller, B. M., Burrows, A. M., Gothard, K. M. & Vick, S.-J. Brief communication: MaqFACS: a muscle-based facial movement coding system for the rhesus macaque. Am. J. Phys. Anthropol. 143, 625–630 (2010).
Correia-Caeiro, C., Burrows, A., Wilson, D. A., Abdelrahman, A. & Miyabe-Nishiwaki, T. CalliFACS: the common marmoset Facial Action Coding System. PLoS ONE 17, e0266442 (2022).
Waller, B. M. et al. Paedomorphic facial expressions give dogs a selective advantage. PLoS ONE 8, e82686 (2013).
Caeiro, C. C., Burrows, A. M. & Waller, B. M. Development and application of CatFACS: are human cat adopters influenced by cat facial expressions?. Appl. Anim. Behav. Sci. 189, 66–78 (2017).
Waller, B. M., Julle-Daniere, E. & Micheletta, J. Measuring the evolution of facial ‘expression’ using multi-species FACS. Neurosci. Biobehav. Rev. 113, 1–11 (2020).
Nieuwburg, E. G., Ploeger, A. & Kret, M. E. Emotion recognition in nonhuman primates: how experimental research can contribute to a better understanding of underlying mechanisms. Neurosci. Biobehav. Rev. 123, 24–47 (2021).
Sosa, M. & Giocomo, L. M. Navigating for reward. Nat. Rev. Neurosci. 22, 472–487 (2021).
Hunt, L. et al. Formalizing planning and information search in naturalistic decision-making. Nat. Neurosci. 24, 1051–1064 (2021).
Artoni, P. et al. Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients. Proc. Natl Acad. Sci. USA 117, 23298–23303 (2020).
Martins, P. T. & Boeckx, C. Vocal learning: beyond the continuum. PLoS Biol. 18, e3000672 (2020).
Ravignani, A. et al. Rhythm in speech and animal vocalizations: a cross-species perspective. Ann. N. Y. Acad. Sci. 1453, 79–98 (2019).
Gabeff, V., Rußwurm, M., Tuia, D. & Mathis, A. WildCLIP: scene and animal attribute retrieval from camera trap data with domain-adapted vision-language models. Int. J. Comput. Vis. 32, 3770–3786 (2024).
Diester, I. et al. Internal world models in humans, animals, and AI. Neuron 112, 2265–2268 (2024).
Averbeck, B. B. & Costa, V. D. Motivational neural circuits underlying reinforcement learning. Nat. Neurosci. 20, 505–512 (2017).
Ye, S. et al. SuperAnimal pretrained pose estimation models for behavioral analysis. Nat. Commun. 15, 5165 (2024).
Brookes, O. et al. PanAf20K: a large video dataset for wild ape detection and behaviour recognition. Int. J. Comput. Vis. 132, 3086–3102 (2024).
Ye, S., Lauer, J., Zhou, M., Mathis, A. & Mathis, M. AmadeusGPT: a natural language interface for interactive animal behavioral analysis. Adv. Neural Inf. Process. Syst. 36, 6297–6329 (2023).
Ding, X. & Zhang, H. Dissociation and hierarchy of human visual pathways for simultaneously coding facial identity and expression. NeuroImage 264, 119769 (2022).
Driess, D. et al. Palm-e: An embodied multimodal language model. In Proc. International Conference on Machine Learning 202, 8469–8488 (PMLR, 2023).
Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. International Conference on Machine Learning 139, 8748–8763 (PMLR, 2021).
Zhang, Y. et al. Exploring the transferability of visual prompting for multimodal large language models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 26562–26572 (IEEE, 2024).
Chou, Y.-L., Moreira, C., Bruza, P., Ouyang, C. & Jorge, J. Counterfactuals and causability in explainable artificial intelligence: theory, algorithms and applications. Inf. Fusion 81, 59–83 (2022).
Jaimini, U. & Sheth, A. CausalKG: Causal Knowledge Graph explainability using interventional and counterfactual reasoning. IEEE Internet Comput. 26, 43–50 (2022).
Feuerriegel, S. et al. Causal machine learning for predicting treatment outcomes. Nat. Med. 30, 958–968 (2024).
Prosperi, M. et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat. Mach. Intell. 2, 369–375 (2020).
Rozantsev, A., Salzmann, M. & Fua, P. Residual parameter transfer for deep domain adaptation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4339–4348 (IEEE, 2018).
Kanakasabapathy, M. K. et al. Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images. Nat. Biomed. Eng. 5, 571–585 (2021).
Subramanian, S. et al. Towards foundation models for scientific machine learning: characterizing scaling and transfer behavior. In Proc. International Conference on Neural Information Processing Systems 36, 71242–71262 (Curran Associates, 2024).
Jiang, S. et al. Confounder balancing in adversarial domain adaptation for pre-trained large models fine-tuning. Neural Netw. 173, 106173 (2024).
Luxem, K. et al. Identifying behavioral structure from deep variational embeddings of animal motion. Commun. Biol. 5, 1267 (2022).
Choi, S. H. et al. Individual variations lead to universal and cross-species patterns of social behavior. Proc. Natl Acad. Sci. USA 117, 31754–31759 (2020).
Kaiser, M. I., Gadau, J., Kaiser, S., Müller, C. & Richter, S. H. Individualized social niches in animals: theoretical clarifications and processes of niche change. BioScience 74, 146–158 (2024).
Rocha, L. E., Ryckebusch, J., Schoors, K. & Smith, M. The scaling of social interactions across animal species. Sci. Rep. 11, 12584 (2021).
Schino, G. & Pinzaglia, M. Age-related changes in the social behavior of tufted capuchin monkeys. Am. J. Primatol. 80, e22746 (2018).
Zhang, T.-Y. et al. Brain-derived neurotrophic factor in the nucleus accumbens mediates individual differences in behavioral responses to a natural, social reward. Mol. Neurobiol. 57, 290–301 (2020).
Cavanagh, J. F. et al. Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl. Psychiatry 11, 482 (2021).
Brynildsen, J. K., Rajan, K., Henderson, M. X. & Bassett, D. S. Network models to enhance the translational impact of cross-species studies. Nat. Rev. Neurosci. 24, 575–588 (2023).
Devinsky, O. et al. A cross-species approach to disorders affecting brain and behaviour. Nat. Rev. Neurol. 14, 677–686 (2018).
Kokkinou, M. et al. Reproducing the dopamine pathophysiology of schizophrenia and approaches to ameliorate it: a translational imaging study with ketamine. Mol. Psychiatry 26, 2562–2576 (2021).
Salvan, P. et al. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat. Neurosci. 26, 53–63 (2023).
Gyles, T. M., Nestler, E. J. & Parise, E. M. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 49, 215–226 (2024).
Shemesh, Y. & Chen, A. A paradigm shift in translational psychiatry through rodent neuroethology. Mol. Psychiatry 28, 993–1003 (2023).
Nani, J. V., Muotri, A. R. & Hayashi, M. A. F. Peering into the mind: unraveling schizophrenia’s secrets using models. Mol. Psychiatry 30, 659–678 (2025).
Yang, Z. & Long, M. A. Convergent vocal representations in parrot and human forebrain motor networks. Nature 640, 427–434 (2025).
Weinreb, C. et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics. Nat. Methods 21, 1329–1339 (2024).
Flórez-Vargas, O. et al. Bias in the reporting of sex and age in biomedical research on mouse models. eLife 5, e13615 (2016).
Rosenbacke, R., Melhus, Å, McKee, M. & Stuckler, D. How explainable artificial intelligence can increase or decrease clinicians’ trust in AI applications in health care: systematic review. JMIR AI 3, e53207 (2024).
Hassija, V. et al. Interpreting black-box models: a review on explainable artificial intelligence. Cogn. Comput. 16, 45–74 (2024).
Hagendorff, T. The ethics of AI ethics: an evaluation of guidelines. Minds Mach. 30, 99–120 (2020).
Ienca, M., Jotterand, F., Vică, C. & Elger, B. Social and assistive robotics in dementia care: ethical recommendations for research and practice. Int. J. Soc. Robot. 8, 565–573 (2016).
Herlin, A. et al. Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals 11, 829 (2021).
Cartmill, E. A. Overcoming bias in the comparison of human language and animal communication. Proc. Natl Acad. Sci. USA 120, e2218799120 (2023).
Sakamaki, T. Social grooming among wild bonobos (Pan paniscus) at Wamba in the Luo Scientific Reserve, DR Congo, with special reference to the formation of grooming gatherings. Primates 54, 349–359 (2013).
Bigiani, S. & Pilenga, C. Cooperation increases bottlenose dolphins’ (Tursiops truncatus) social affiliation. Anim. Cogn. 26, 1319–1333 (2023).
Riters, L. V. Pleasure seeking and birdsong. Neurosci. Biobehav. Rev. 35, 1837–1845 (2011).
Siniscalchi, M., Lusito, R., Vallortigara, G. & Quaranta, A. Seeing left-or right-asymmetric tail wagging produces different emotional responses in dogs. Curr. Biol. 23, 2279–2282 (2013).
Humphrey, T., Stringer, F., Proops, L. & McComb, K. Slow blink eye closure in shelter cats is related to quicker adoption. Animals 10, 2256 (2020).
Gainotti, G. Hemispheric asymmetries for emotions in non-human primates: a systematic review. Neurosci. Biobehav. Rev. 141, 104830 (2022).
Lee, S. M. et al. Wild bonobo and chimpanzee females exhibit broadly similar patterns of behavioral maturation but some evidence for divergence. Am. J. Phys. Anthropol. 171, 100–109 (2020).
Palagi, E. Adult play and the evolution of tolerant and cooperative societies. Neurosci. Biobehav. Rev. 148, 105124 (2023).
Numan, M. & Young, L. J. Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences and broader implications. Horm. Behav. 77, 98–112 (2016).
Kret, M. E., Prochazkova, E., Sterck, E. H. M. & Clay, Z. Emotional expressions in human and non-human great apes. Neurosci. Biobehav. Rev. 115, 378–395 (2020).
Sueur, C. & Huffman, M. A. Co-cultures: exploring interspecies culture among humans and other animals. Trends Ecol. Evol. 39, 821–829 (2024).
Stangl, M., Maoz, S. L. & Suthana, N. Mobile cognition: imaging the human brain in the ‘real world’. Nat. Rev. Neurosci. 24, 347–362 (2023).
Kalan, A. K. et al. Environmental variability supports chimpanzee behavioural diversity. Nat. Commun. 11, 4451 (2020).
Anderson, J. R., Ang, M. Y., Lock, L. C. & Weiche, I. Nesting, sleeping and nighttime behaviors in wild and captive great apes. Primates 60, 321–332 (2019).
Shultz, S. & Dunbar, R. I. Socioecological complexity in primate groups and its cognitive correlates. Philos. Trans. R. Soc. B 377, 20210296 (2022).
Kong, E., Lee, K.-H., Do, J., Kim, P. & Lee, D. Dynamic and stable hippocampal representations of social identity and reward expectation support associative social memory in male mice. Nat. Commun. 14, 2597 (2023).
Cait, J., Cait, A., Scott, R. W., Winder, C. B. & Mason, G. J. Conventional laboratory housing increases morbidity and mortality in research rodents: results of a meta-analysis. BMC Biol. 20, 15 (2022).
Tao, Y. et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat. Med. 27, 632–639 (2021).
Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In Proc. IEEE International Conference on Computer Vision 618–626 (IEEE, 2017).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. Advances in Neural Information Processing Systems 30, 4768–4777 (Curran Associates, 2017).
Cuthbert, B. N. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13, 28–35 (2014).
Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).
Zych, A. D. & Gogolla, N. Expressions of emotions across species. Curr. Opin. Neurobiol. 68, 57–66 (2021).
Gutierrez-Barragan, D., Ramirez, J. S., Panzeri, S., Xu, T. & Gozzi, A. Evolutionarily conserved fMRI network dynamics in the mouse, macaque and human brain. Nat. Commun. 15, 8518 (2024).
Pagani, M., Gutierrez-Barragan, D., de Guzman, A. E., Xu, T. & Gozzi, A. Mapping and comparing fMRI connectivity networks across species. Commun. Biol. 6, 1238 (2023).
Wang, X. et al. U-net model for brain extraction: Trained on humans for transfer to non-human primates. Neuroimage 235, 118001 (2021).
Zhong, T. et al. nBEST: deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species. NeuroImage 295, 120652 (2024).
Acknowledgements
The manuscript development was supported by a NIH NEW Brain Aging Center Grant (U24AG072701 to F.V.-L. and K.H.W.), the University of Rochester Del Monte Institute for Neuroscience (K.H.W.) and the Research Council of Finland Academy Professor project EmotionAI (grants 336116, 345122 and 359854 to G.Z.).
Author information
Authors and Affiliations
Contributions
Y.M.L. led all aspects of the manuscript, including conceptualization, literature reviewing, framework development, drafting and integration of content. A.T., E.A. and G.Z. contributed to revising the paper and provided expertise in neuroscience theory, AI technology and human behavioral analysis, respectively. K.H.W. co-supervised the project, polished the manuscript, and contributed knowledge on animal behavior and underlying mechanisms. F.V.-L. supervised the project, refined the manuscript, and provided expertise on human behavior and underlying mechanisms.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Mental Health thanks Atsushi Noritake and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, Y.M., Turnbull, A., Adeli, E. et al. A multi-dimensional transfer learning framework for studying reward-guided behaviors across species. Nat. Mental Health 4, 15–29 (2026). https://doi.org/10.1038/s44220-025-00547-8
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44220-025-00547-8


