Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly selective and energy efficient approach to boron removal overcomes the Achilles heel of seawater desalination

Abstract

Selective removal of trace contaminants from water remains a crucial challenge in water treatment. Boron is a trace contaminant that is ubiquitous in seawater and has been widely detected in groundwater. Current boron removal methods, such as multi-stage reverse osmosis and ion-exchange adsorption, are chemical and energy intensive, necessitating the development of more sustainable technologies. Here we address this challenge by developing surface functionalized microporous electrodes that enable boron-selective bipolar membrane-assisted electrosorption. Our study demonstrates that micropore functionalization with oxygen-containing (hydroxyl, lactone and carboxyl) and boron-selective (dopamine, 3-methylamino-1,2-propanediol and N-methyl-d-glucamine) functional groups substantially improves electrode performance for boron removal and selectivity. The functionalized electrodes exhibit a boron removal selectivity that is an order of magnitude higher than that of the pristine electrode, facilitating energy efficient boron electrosorption. We identify hydroxyl groups as the key factor in enhancing boron removal performance and selectivity during electrosorption. Molecular dynamics simulations demonstrate the underlying mechanisms of boron selectivity, highlighting the role of hydrogen bonding between hydroxyl groups and boron in governing the boron-selective electrosorption process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication procedures and morphological changes of functionalized electrodes.
Fig. 2: Analysis of physico-chemical properties of post functionalized electrodes.
Fig. 3: Electrode performance after chemical functionalization.
Fig. 4: Mechanisms exploration.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. All data files in .xlsx format are available as Supplementary Data 13. Source data are provided with this paper.

References

  1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Google Scholar 

  4. Kurwadkar, S. et al. Per- and polyfluoroalkyl substances in water and wastewater: a critical review of their global occurrence and distribution. Sci. Total Environ. 809, 151003 (2022).

    PubMed  CAS  Google Scholar 

  5. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    PubMed  CAS  Google Scholar 

  6. Gin, D. L. & Noble, R. D. Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011).

    PubMed  CAS  Google Scholar 

  7. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Patel, S. K., Biesheuvel, P. M. & Elimelech, M. Energy consumption of brackish water desalination: identifying the sweet spots for electrodialysis and reverse osmosis. ACS ES&T Eng. 1, 851–864 (2021).

    CAS  Google Scholar 

  9. Wang, L., Violet, C., DuChanois, R. M. & Elimelech, M. Derivation of the theoretical minimum energy of separation of desalination processes. J. Chem. Edu. 97, 4361–4369 (2020).

    CAS  Google Scholar 

  10. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009).

    PubMed  CAS  Google Scholar 

  11. Patel, S. K., Pan, W., Shin, Y.-U., Kamcev, J. & Elimelech, M. Electrosorption integrated with bipolar membrane water dissociation: a coupled approach to chemical-free boron removal. Environ. Sci. Technol. 57, 4578–4590 (2023).

    PubMed  CAS  Google Scholar 

  12. Boron in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (World Health Organization, 2009).

  13. Weinthal, E., Parag, Y., Vengosh, A., Muti, A. & Kloppmann, W. The EU drinking water directive: the boron standard and scientific uncertainty. Eur. Environ. 15, 1–12 (2005).

    Google Scholar 

  14. DeLeo, P. C., Stuard, S. B., Kinsky, O., Thiffault, C. & Baisch, B. Assessment of consumer exposure to boron in cleaning products: a case study of Canada. Crit. Rev. Toxicol. 51, 359–371 (2021).

    PubMed  Google Scholar 

  15. Drinking Water Health Advisory for Boron (US EPA, 2008); https://www.epa.gov/sites/default/files/2014-09/documents/drinking_water_health_advisory_for_boron.pdf

  16. Hilal, N., Kim, G. J. & Somerfield, C. Boron removal from saline water: a comprehensive review. Desalination 273, 23–35 (2011).

    CAS  Google Scholar 

  17. Lokiec, F. & Kronenberg, G. South Israel 100 million m3/y seawater desalination facility: build, operate and transfer (BOT) project. Desalination 156, 29–37 (2003).

    CAS  Google Scholar 

  18. Rybar, S., Boda, R. & Bartels, C. Split partial second pass design for SWRO plants. Desalin. Water Treat. 13, 186–194 (2010).

    CAS  Google Scholar 

  19. Chillón Arias, M. F., Valero i Bru, L., Prats Rico, D. & Varó Galvañ, P. Approximate cost of the elimination of boron in desalinated water by reverse osmosis and ion exchange resins. Desalination 273, 421–427 (2011).

    Google Scholar 

  20. Güler, E., Kaya, C., Kabay, N. & Arda, M. Boron removal from seawater: state-of-the-art review. Desalination 356, 85–93 (2015).

    Google Scholar 

  21. Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).

    CAS  Google Scholar 

  22. Alkhadra, M. A. et al. Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122, 13547–13635 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Oren, Y. Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 228, 10–29 (2008).

    CAS  Google Scholar 

  24. Qin, M. et al. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455, 100–114 (2019).

    CAS  Google Scholar 

  25. Patel, S. K., Qin, M., Walker, W. S. & Elimelech, M. Energy efficiency of electro-driven brackish water desalination: electrodialysis significantly outperforms membrane capacitive deionization. Environ. Sci. Technol. 54, 3663–3677 (2020).

    PubMed  CAS  Google Scholar 

  26. Shocron, A. N. et al. Electrochemical removal of amphoteric ions. Proc. Natl Acad. Sci. 118, e2108240118 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Shocron, A. N., Uwayid, R., Guyes, E. N., Dykstra, J. E. & Suss, M. E. Order-of-magnitude enhancement in boron removal by membrane-free capacitive deionization. Chem. Eng. J. 466, 142722 (2023).

    CAS  Google Scholar 

  28. Sun, J., Zhang, C., Song, Z. & Waite, T. D. Boron removal from reverse osmosis permeate using an electrosorption process: feasibility, kinetics, and mechanism. Environ. Sci. Technol. 56, 10391–10401 (2022).

    PubMed  CAS  Google Scholar 

  29. Gamaethiralalage, J. G. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. 14, 1095–1120 (2021).

    CAS  Google Scholar 

  30. DeFrancesco H., Dudley J. & Coca A. in Boron Reagents in Synthesis Ch. 1 (ed. Coca, A.) (American Chemical Society, 2016).

  31. Guan, Z., Lv, J., Bai, P. & Guo, X. Boron removal from aqueous solutions by adsorption—a review. Desalination 383, 29–37 (2016).

    CAS  Google Scholar 

  32. Kamcev, J. et al. Functionalized porous aromatic frameworks as high-performance adsorbents for the rapid removal of boric acid from water. Adv. Mater. 31, 1808027 (2019).

    Google Scholar 

  33. Uliana, A. A. et al. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 372, 296–299 (2021).

    PubMed  CAS  Google Scholar 

  34. Polovina, M., Babić, B., Kaluderović, B. & Dekanski, A. Surface characterization of oxidized activated carbon cloth. Carbon 35, 1047–1052 (1997).

    CAS  Google Scholar 

  35. Cheng, N. et al. Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun. 51, 1616–1619 (2015).

    CAS  Google Scholar 

  36. Bard A. J., Faulkner L. R. & White H. S. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).

  37. Trasatti, S. & Petrii, O. Real surface area measurements in electrochemistry. Pure Appl. Chem. 63, 711–734 (1991).

    CAS  Google Scholar 

  38. Zhang, Z. & Flaherty, D. W. Modified potentiometric titration method to distinguish and quantify oxygenated functional groups on carbon materials by pKa and chemical reactivity. Carbon 166, 436–445 (2020).

    CAS  Google Scholar 

  39. Petrovic, B., Gorbounov, M. & Masoudi Soltani, S. Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Sci. Technol. 3, 100045 (2022).

    CAS  Google Scholar 

  40. Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994).

    CAS  Google Scholar 

  41. Bhagyaraj, S., Al-Ghouti, M. A., Kasak, P. & Krupa, I. An updated review on boron removal from water through adsorption processes. Emergent Mater. 4, 1167–1186 (2021).

    CAS  Google Scholar 

  42. Soga, T. & Ross, G. A. Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis. J. Chromatogr. A 837, 231–239 (1999).

    CAS  Google Scholar 

  43. Lin, J.-Y., Mahasti, N. N. N. & Huang, Y.-H. Recent advances in adsorption and coagulation for boron removal from wastewater: a comprehensive review. J. Hazard. Mater. 407, 124401 (2021).

    PubMed  CAS  Google Scholar 

  44. Yoshimura, K., Miyazaki, Y., Ota, F., Matsuoka, S. & Sakashita, H. Complexation of boric acid with the N-methyl-D-glucamine group in solution and in crosslinked polymer. J. Chem. Soc., Faraday Trans. 94, 683–689 (1998).

    CAS  Google Scholar 

  45. Manjunatha Reddy, G., Gerbec, J. A., Shimizu, F. & Chmelka, B. F. Nanoscale surface compositions and structures influence boron adsorption properties of anion exchange resins. Langmuir 35, 15661–15673 (2019).

    PubMed  CAS  Google Scholar 

  46. Kang, J. S. et al. Surface electrochemistry of carbon electrodes and Faradaic reactions in capacitive deionization. Environ. Sci. Technol. 56, 12602–12612 (2022).

    PubMed  CAS  Google Scholar 

  47. Kotz, S., Balakrishnan, N., Read, C. B., Vidakovic, B. & Johnson, N. L. Encyclopedia of Statistical Sciences Vol. 1 (Wiley, 2005).

  48. Wang, Y., Huang, C. & Xu, T. Which is more competitive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes? J. Membr. Sci. 374, 150–156 (2011).

    CAS  Google Scholar 

  49. Xing, Y., Dementev, N. & Borguet, E. Chemical labeling for quantitative characterization of surface chemistry. Curr. Opin. Solid State Mater. Sci. 11, 86–91 (2007).

    CAS  Google Scholar 

  50. Goertzen, S. L., Thériault, K. D., Oickle, A. M., Tarasuk, A. C. & Andreas, H. A. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48, 1252–1261 (2010).

    CAS  Google Scholar 

  51. Sneh, O. & George, S. M. Thermal stability of hydroxyl groups on a well-defined silica surface. J. Phys. Chem. 99, 4639–4647 (1995).

    CAS  Google Scholar 

  52. Lim, Y. J., Goh, K., Kurihara, M. & Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication–a review. J. Membr. Sci. 629, 119292 (2021).

    CAS  Google Scholar 

  53. Spencer, R. R. & Erdmann, D. E. Azomethine H colorimetric method for determining dissolved boron in water. Environ. Sci. Technol. 13, 954–956 (1979).

    CAS  Google Scholar 

  54. López, F., Giménez, E. & Hernández, F. Analytical study on the determination of boron in environmental water samples. Fresenius J. Anal. Chem. 346, 984–987 (1993).

    Google Scholar 

  55. Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 102, 511–524 (1995).

    CAS  Google Scholar 

  56. Price, D. J. & Brooks, C. L. III A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121, 10096–10103 (2004).

    PubMed  CAS  Google Scholar 

  57. Malde, A. K. et al. An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7, 4026–4037 (2011).

    PubMed  CAS  Google Scholar 

  58. Cole, M. W. & Klein, J. R. The interaction between noble gases and the basal plane surface of graphite. Surf. Sci. 124, 547–554 (1983).

    CAS  Google Scholar 

  59. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Alliance for Water Innovation (NAWI), funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office, under Funding Opportunity Announcement Number DE-FOA-0001905, and by the US National Science Foundation (NSF) and US-Israel Binational Science Foundation (BSF) under award number CBET-2001219. We thank Y. Duan from the Department of Chemical and Environmental Engineering at Yale University for technical assistance with conducting the electrochemically active surface area measurement.

Author information

Authors and Affiliations

Authors

Contributions

W.P., D.R., J.K. and M.E. conceptualized and designed the study. W.P., D.R. and E.A., conducted experimental research. B.U. and A.H.-A. performed computational research. W.P., D.R., B.U., S.K.P. and A.I. performed data analysis and visualization. J.K. and M.E. supervised the study. W.P., D.R., B.U., J.K. and M.E. wrote the manuscript, with all authors contributing to manuscript editing.

Corresponding authors

Correspondence to Jovan Kamcev or Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Chia-Hung Hou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–6, Tables 1–3 and Figs. 1–18.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2a–l.

Source Data Fig. 3

Numerical data for Fig. 3b–e.

Source Data Fig. 4

Numerical data for Fig. 4c–g.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Roy, D., Uralcan, B. et al. A highly selective and energy efficient approach to boron removal overcomes the Achilles heel of seawater desalination. Nat Water 3, 99–109 (2025). https://doi.org/10.1038/s44221-024-00362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00362-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing