Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functionalizing solar-driven steam generation towards water and energy sustainability

Abstract

Solar-driven steam generation (SSG) combines solar energy and water, two of Earth’s most abundant yet essential resources, and has garnered widespread attention. Over the past decade, substantial advancements have been made in improving both solar-to-steam conversion efficiency and long-term stability. However, relying solely on solar conversion efficiency as a performance benchmark is no longer sufficient, given the widespread achievement of high efficiency levels. Exciting progress has recently been made in the functionalization of SSG, suggesting a new and pivotal role for SSG in addressing broader application scenarios related to water and energy sustainability. In this Review we first trace milestones in the development of SSG and explore its conceptual functionalization, which is driving recent innovative strides in water and energy sustainability. Insights are provided to further exploit this promising potential. Finally, we discuss the challenges and future prospects of SSG, highlighting a pathway for future development and practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic structure, practical energy requirements and cost analysis of SSG technology.
Fig. 2: The development of SSG for high-efficiency and sustainable water purification and desalination.
Fig. 3: Recent progresses to secure sustainable water and salt generation through SSG.
Fig. 4: Energy scavenging from SSG process.
Fig. 5: The functionalization of SSG for sterilization, chemical engineering and cooling applications.
Fig. 6: Functionalized SSG structures and devices for environmental remediation and clean fuel production.
Fig. 7: Other multifunctional demonstrations of SSG for applications in agriculture, mineral extraction and atmospheric water harvesting.

Similar content being viewed by others

References

  1. Zhao, C. et al. China’s energy transitions for carbon neutrality: challenges and opportunities. Carb. Neutral. 1, 7 (2022).

    Google Scholar 

  2. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    CAS  Google Scholar 

  3. Hauch, A. et al. Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020).

    CAS  PubMed  Google Scholar 

  4. Chen, C. et al. Challenges and perspectives for solar fuel production from water/carbon dioxide with thermochemical cycles. Carb. Neutral. 2, 9–27 (2023).

    CAS  Google Scholar 

  5. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Google Scholar 

  6. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  PubMed  Google Scholar 

  7. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Google Scholar 

  8. Wu, S. et al. Solar-driven evaporators for water treatment: challenges and opportunities. Environ. Sci. Wat. Res. Technol. 7, 24–39 (2021).

    CAS  Google Scholar 

  9. Yang, H. C. et al. Membranes in solar‐driven evaporation: design principles and applications. Adv. Funct. Mater. 33, 2304580 (2023).

    CAS  Google Scholar 

  10. Li, X., Xie, W. & Zhu, J. Interfacial solar steam/vapor generation for heating and cooling. Adv. Sci. 9, 2104181 (2022).

    CAS  Google Scholar 

  11. Xu, N. et al. Going beyond efficiency for solar evaporation. Nat. Water. 1, 494–501 (2023).

    Google Scholar 

  12. Wang, W., Aleid, S. & Wang, P. Decentralized co‐generation of fresh water and electricity at point of consumption. Adv. Sustain. Syst. 4, 2000005 (2020).

    CAS  Google Scholar 

  13. Shi, P., Li, J., Song, Y., Xu, N. & Zhu, J. Cogeneration of clean water and valuable energy/resources via interfacial solar evaporation. Nano Lett. 24, 5673–5682 (2024).

    CAS  PubMed  Google Scholar 

  14. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    CAS  Google Scholar 

  15. Yu, Z. et al. Interfacial solar evaporator for clean water production and beyond: from design to application. Appl. Energy 299, 117317 (2021).

    Google Scholar 

  16. Han, X., Ding, S., Hu, H. & Wang, S. Recent advances in structural regulation and optimization of high-performance solar-driven interfacial evaporation systems. J. Mater. Chem. A 1, 1859–18541 (2022).

    Google Scholar 

  17. Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Onggowarsito, C. et al. Updated perspective on solar steam generation application. Energy Environ. Sci. 17, 2088–2099 (2024).

    Google Scholar 

  19. Finnerty, C. T. K. et al. Demand for off-grid desalination technology in small-island communities—can interfacial solar vapor generation be the answer? Desalination 553, 116454 (2023).

    CAS  Google Scholar 

  20. Yang, H. C. et al. Chinese ink: a powerful photothermal material for solar steam generation. Adv. Mater. Interf. 6, 1801252 (2019).

    Google Scholar 

  21. Kim, H. T. et al. Recent advances in high‐rate solar‐driven interfacial evaporation. Adv. Sci. 11, 2401322 (2024).

    CAS  Google Scholar 

  22. Zhang, Y., Xiong, T., Nandakumar, D. K. & Tan, S. C. Structure architecting for salt‐rejecting solar interfacial desalination to achieve high‐performance evaporation with in situ energy generation. Adv. Sci. 7, 1903478 (2020).

    CAS  Google Scholar 

  23. Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).

    CAS  Google Scholar 

  24. Gao, T., Wu, X., Wang, Y., Owens, G. & Xu, H. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Sol. RRL 5, 2100053 (2021).

    CAS  Google Scholar 

  25. Xu, W. et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018).

    Google Scholar 

  26. Ni, G. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

    CAS  Google Scholar 

  27. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    CAS  PubMed  Google Scholar 

  28. Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Google Scholar 

  29. Zhang, L. et al. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. 13, 849 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, Z. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 13, 830–839 (2020).

    CAS  Google Scholar 

  31. Yu, Z. et al. Enhanced interfacial solar evaporation through formation of micro‐meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022).

    CAS  Google Scholar 

  32. Xia, Q. et al. Solar-driven abnormal evaporation of nanoconfined water. Sci. Adv. 10, eadj3760 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    CAS  PubMed  Google Scholar 

  34. Wu, X. et al. Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, 2313090 (2024).

    CAS  Google Scholar 

  35. Zhu, M. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2018).

    Google Scholar 

  36. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    CAS  Google Scholar 

  37. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Liu, H. et al. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J. Mater. Chem. A 6, 18839–18846 (2018).

    CAS  Google Scholar 

  39. Wang, J. et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017).

    Google Scholar 

  40. Cui, L. et al. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 30, 1706805 (2018).

    Google Scholar 

  41. Shi, L., Wang, Y., Zhang, L. & Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 5, 16212–16219 (2017).

    CAS  Google Scholar 

  42. Xu, N. et al. Mushrooms as efficient solar steam‐generation devices. Adv. Mater. 29, 1606762 (2017).

    Google Scholar 

  43. Chen, G. et al. Biradical‐featured stable organic‐small‐molecule photothermal materials for highly efficient solar‐driven water evaporation. Adv. Mater. 32, 1908537 (2020).

    CAS  Google Scholar 

  44. Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 113, 13953–13958 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chiavazzo, E. Critical aspects to enable viable solar-driven evaporative technologies for water treatment. Nat. Commun. 13, 5813 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. & Tan, S. C. Best practices for solar water production technologies. Nat. Sustain. 5, 554–556 (2022).

    Google Scholar 

  47. Wang, F. et al. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5, 1602–1612 (2021).

    CAS  Google Scholar 

  48. Yao, H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 14, 5330–5338 (2021).

    CAS  Google Scholar 

  49. Kuang, Y. et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, 1900498 (2019).

    Google Scholar 

  50. Zhang, Y. et al. Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and in situ energy generation. ACS Energy Lett. 5, 3397–3404 (2020).

    CAS  Google Scholar 

  51. Zhang, Y. et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation. Energy Environ. Sci. 13, 4891–4902 (2020).

    CAS  Google Scholar 

  52. Yu, Z. et al. High-flux flowing interfacial water evaporation under multiple heating sources enabled by a biohybrid hydrogel. Nano Energy 98, 107287 (2022).

    CAS  Google Scholar 

  53. Morciano, M., Fasano, M., Boriskina, S. V., Chiavazzo, E. & Asinari, P. Solar passive distiller with high productivity and Marangoni effect-driven salt rejection. Energy Environ. Sci. 13, 3646–3655 (2020).

    CAS  Google Scholar 

  54. Fecko, C. J., Eaves, J. D., Loparo, J. J., Tokmakoff, A. & Geissler, P. L. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

    CAS  PubMed  Google Scholar 

  55. Ducker, W. A. Decreasing the energy of evaporation using interfacial water: is this useful for solar evaporation efficiency? ACS Omega 8, 19705–19707 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, B. et al. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023).

    CAS  PubMed  Google Scholar 

  57. Tu, Y. et al. Plausible photomolecular effect leading to water evaporation exceeding the thermal limit. Proc. Natl. Acad. Sci. USA 120, e2312751120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lv, G., Tu, Y., Zhang, J. H. & Chen, G. Photomolecular effect: visible light interaction with air–water interface. Proc. Natl. Acad. Sci. USA 121, e2320844121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, W. et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10, 3012 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Cheng, S., Li, Y., Jin, B., Yu, Z. & Gu, R. Designing salt transmission channel of solar-driven multistage desalination device for efficient and stable freshwater production from seawater. Desalination 531, 115688 (2022).

    CAS  Google Scholar 

  61. Gao, J. et al. Extreme salt-resisting multistage solar distillation with thermohaline convection. Joule 7, 2274–2290 (2023).

    Google Scholar 

  62. Song, H. et al. Cold vapor generation beyond the input solar energy limit. Adv. Sci. 5, 1800222 (2018).

    Google Scholar 

  63. Shi, Y. et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018).

    CAS  Google Scholar 

  64. Wu, S. et al. Suspended membrane evaporators integrating environmental and solar evaporation for oily wastewater purification. ACS Appl. Mater. Interf. 13, 39513–39522 (2021).

    CAS  Google Scholar 

  65. Zhang, C. et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12, 998 (2021).

    PubMed  PubMed Central  Google Scholar 

  66. Finnerty, C. T. K. et al. Interfacial solar evaporation by a 3D graphene oxide stalk for highly concentrated brine treatment. Environ. Sci. Technol. 55, 15435–15445 (2021).

    CAS  PubMed  Google Scholar 

  67. Niu, R. et al. Bio‐inspired sandwich‐structured all‐day‐round solar evaporator for synergistic clean water and electricity generation. Adv. Energy Mater. 13, 2302451 (2023).

    CAS  Google Scholar 

  68. Zhu, L., Ding, T., Gao, M., Peh, C. K. N. & Ho, G. W. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. Adv. Energy Mater. 9, 1900250 (2019).

    Google Scholar 

  69. Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6, 7346 (2015).

    CAS  PubMed  Google Scholar 

  70. Cavusoglu, A., Chen, X., Gentine, P. & Sahin, O. Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Yang, P. et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017).

    CAS  Google Scholar 

  72. Wang, H. et al. Simultaneous solar steam and electricity generation from synergistic salinity‐temperature gradient. Adv. Energy Mater. 11, 2100481 (2021).

    CAS  Google Scholar 

  73. Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    CAS  PubMed  Google Scholar 

  74. Tan, J. et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13, 3643 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen, Q. et al. An open thermo-electrochemical cell enabled by interfacial evaporation. J. Mater. Chem. A 7, 6514–6521 (2019).

    CAS  Google Scholar 

  76. Li, X. et al. Storage and recycling of interfacial solar steam enthalpy. Joule 2, 2477–2484 (2018).

    Google Scholar 

  77. Li, J. et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 30, 1805159 (2018).

    Google Scholar 

  78. Chang, C. et al. High-efficiency superheated steam generation for portable sterilization under ambient pressure and low solar flux. ACS Appl. Mater. Interf. 11, 18466–18474 (2019).

    CAS  Google Scholar 

  79. Cooper, T. A. et al. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9, 5086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao, L. et al. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020).

    CAS  Google Scholar 

  81. Yao, P. et al. Greener and higher conversion of esterification via interfacial photothermal catalysis. Nat. Sustain. 5, 348–356 (2022).

    Google Scholar 

  82. Li, D. et al. Mutual reinforcement of evaporation and catalysis for efficient freshwater–salt–chemical production. Adv. Funct. Mater. 33, 2300353 (2023).

    CAS  Google Scholar 

  83. Lu, Z., Strobach, E., Chen, N., Ferralis, N. & Grossman, J. C. Passive sub-ambient cooling from a transparent evaporation-insulation bilayer. Joule 4, 2693–2701 (2020).

    CAS  Google Scholar 

  84. Xu, N. et al. Synergistic tandem solar electricity-water generators. Joule 4, 347–358 (2020).

    Google Scholar 

  85. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3, 636–643 (2020).

    Google Scholar 

  86. Wang, W. et al. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 5, 1873–1887 (2021).

    Google Scholar 

  87. Mao, Z. et al. Passive interfacial cooling-induced sustainable electricity–water cogeneration. Nat. Water 2, 93–100 (2024).

    Google Scholar 

  88. Xu, J. et al. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Cent. Sci. 6, 1542–1554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, C. et al. A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule 4, 435–447 (2020).

    CAS  Google Scholar 

  90. Zhou, S. et al. Self-regulating solar steam generators enable volatile organic compound removal through in situ H2O2 generation. Environ. Sci. Technol. 56, 10474–10482 (2022).

    CAS  PubMed  Google Scholar 

  91. Qi, D. et al. Polymeric membranes with selective solution‐diffusion for intercepting volatile organic compounds during solar‐driven water remediation. Adv. Mater. 32, 2004401 (2020).

    CAS  Google Scholar 

  92. Ma, J. et al. A light-permeable solar evaporator with three-dimensional photocatalytic sites to boost volatile-organic-compound rejection for water purification. Environ. Sci. Technol. 56, 9797–9805 (2022).

    CAS  PubMed  Google Scholar 

  93. Guo, Y. et al. Biomass‐derived hybrid hydrogel evaporators for cost‐effective solar water purification. Adv. Mater. 32, 1907061 (2020).

    CAS  Google Scholar 

  94. Yu, Z. et al. Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production. Nat. Commun. 15, 6081 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, P., Wu, X., Wang, Y., Xu, H. & Owens, G. A biomimetic interfacial solar evaporator for heavy metal soil remediation. Chem. Eng. J. 435, 134793 (2022).

    CAS  Google Scholar 

  96. Zou, H. et al. Solar-driven scalable hygroscopic gel for recycling water from passive plant transpiration and soil evaporation. Nat. Water 2, 663–673 (2024).

    CAS  Google Scholar 

  97. Chen, W., Wang, T., Dou, Z. & Xie, X. Microalgae harvesting by self-driven 3D microfiltration with rationally designed porous superabsorbent polymer (PSAP) beads. Environ. Sci. Technol. 55, 15446–15455 (2021).

    CAS  PubMed  Google Scholar 

  98. Wang, B., Zhao, S., Wang, S., Fu, Y. & Liu, M. Coupling photothermal evaporation into photocatalysis for enhanced hydrogen production from water. Innov. Energy 1, 100018 (2024).

    Google Scholar 

  99. Lee, W. H. et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 18, 754–762 (2023).

    CAS  PubMed  Google Scholar 

  100. Pornrungroj, C. et al. Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification. Nat. Water 1, 952–960 (2023).

    CAS  Google Scholar 

  101. Ren, L. et al. Nanostructuring of Mg-based hydrogen storage materials: recent advances for promoting key applications. Nano-Micro Lett. 15, 93 (2023).

    CAS  Google Scholar 

  102. Neumann, O. et al. Combining solar steam processing and solar distillation for fully off-grid production of cellulosic bioethanol. ACS Energy Lett. 2, 8–13 (2017).

    CAS  Google Scholar 

  103. Bian, Y. et al. Farming on the ocean via desalination (FOOD). Environ. Sci. Technol. 57, 21104–21112 (2023).

    CAS  PubMed  Google Scholar 

  104. Wang, M. et al. An integrated system with functions of solar desalination, power generation and crop irrigation. Nat. Water 1, 716–724 (2023).

    Google Scholar 

  105. Guo, S. et al. Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat 4, e12179 (2022).

    CAS  Google Scholar 

  106. Kazi, O. A. et al. Material design strategies for recovery of critical resources from water. Adv. Mater. 35, 2300913 (2023).

    CAS  Google Scholar 

  107. Chen, X. et al. Spatially separated crystallization for selective lithium extraction from saline water. Nat. Water 1, 808–817 (2023).

    CAS  Google Scholar 

  108. Li, H. et al. Design of photothermal ‘ion pumps’ for achieving energy-efficient, augmented, and durable lithium extraction from seawater. ACS Nano 18, 2434–2445 (2024).

    CAS  PubMed  Google Scholar 

  109. Zhong, Y. et al. Bridging materials innovations to sorption-based atmospheric water harvesting devices. Nat. Rev. Mater. 9, 681–698 (2024).

    Google Scholar 

  110. Li, T. et al. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).

    CAS  Google Scholar 

  111. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program of China (grant number 2023YFB4005403) and National Natural Science Foundation of China (grant number 52306106). Y.Z. acknowledges financial support from Shanghai Jiao Tong University (grant number WH220428005) and S.C.T acknowledges financial support from Singapore Ministry of Education (grant number A-0009304-00-00).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.C.T. conceptualized the manuscript. K.M., Y.Z. and S.C.T. researched data and performed analyses. K.M. and Y.Z. designed and produced Figs. 1–7. All authors contributed to discussions, writing and editing of the manuscript.

Corresponding authors

Correspondence to Yaoxin Zhang or Swee Ching Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, K., Zhang, Y. & Tan, S.C. Functionalizing solar-driven steam generation towards water and energy sustainability. Nat Water 3, 144–156 (2025). https://doi.org/10.1038/s44221-024-00363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00363-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene