Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atmospheric drought indices in future projections

Abstract

In this Perspective we critically discuss future drought projections, focusing on key issues related to the concept of drought and its frequent confusion with aridity. We address the common misunderstanding between drought metrics and drought indices, as well as misconceptions about what drought indices represent. Our analysis emphasizes the role of atmospheric evaporative demand in shaping future drought severity, along with its drivers, impact processes, and responses to global warming, while highlighting related observational and theoretical challenges. We also shed light on the uncertainties and limitations of Earth system models (ESMs) in assessing future drought severity. We explore the complexities of ESMs in accurately representing plant physiological and hydrological processes, which are crucial for evaluating drought severity. Our discussion also delves into the nuanced effects of atmospheric CO2 concentrations on these processes and on water dynamics within ESMs, helping to clarify conceptual issues related to atmospheric drought indices. Finally, we advocate for a balanced evaluation of drought metrics, emphasizing the importance of considering multiple atmospheric processes in drought projections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The different types of drought and their physical and ecological contributing processes and drivers.
Fig. 2: Illustration of the differences in drought severity based on standardized P–ET and standardized ET–AED.
Fig. 3: Difference in the mean duration and magnitude of drought events between the periods 1970–2010 and 2060–2100.
Fig. 4: Atmospheric, hydrological and ecological metrics derived from ESMs used to quantify drought severity and to identify prevailing interactions and sources of uncertainty.
Fig. 5: Scheme including the direct and indirect effects of enhanced atmospheric CO2 on plant transpiration (ET).

Similar content being viewed by others

References

  1. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (World Meteorological Organization, 2021).

  2. UNCCD. Drought in Numbers (United Nations, 2022); https://www.unccd.int/resources/publications/drought-numbers

  3. Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.013

  4. Bachmair, S., Tanguy, M., Hannaford, J. & Stahl, K. How well do meteorological indicators represent agricultural and forest drought across Europe?. Environ. Res. Lett. 13, 034042 (2018).

    Article  Google Scholar 

  5. Vicente-Serrano, S. M. et al. A global drought monitoring system and dataset based on ERA5 reanalysis: a focus on crop-growing regions. Geosci. Data J. https://doi.org/10.1002/gdj3.178 (2022).

    Article  Google Scholar 

  6. Turco, M. et al. Summer drought predictability over Europe: empirical versus dynamical forecasts. Environ. Res. Lett. 12, 084006 (2017).

    Article  Google Scholar 

  7. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  8. Zhao, T. & Dai, A. CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. J. Clim. 35, 897–921 (2022).

    Google Scholar 

  9. Vicente-Serrano, S. M. et al. Global drought trends and future projections. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 380, 20210285 (2022).

    Google Scholar 

  10. McColl, K. A., Roderick, M. L., Berg, A. & Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Change 12, 604–606 (2022).

    Article  Google Scholar 

  11. Zaitchik, B. F., Rodell, M., Biasutti, M. & Seneviratne, S. I. Wetting and drying trends under climate change. Nat. Water 1, 502–513 (2023).

    Article  Google Scholar 

  12. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  13. Scheff, J. Drought indices, drought impacts, CO2 and warming: a historical and geologic perspective. Curr. Clim. Change Rep. 4, 202–209 (2018).

    Article  Google Scholar 

  14. Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land-surface models and climatic dryness metrics disagree? Earths Future 10, e2022EF002814 (2022).

    Article  Google Scholar 

  15. IPCC. Annex VII: Glossary. In Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2215–2256 (Cambridge Univ. Press, 2023).

  16. Gimeno-Sotelo, L., et al. Assessment of the global relationship of different types of droughts in model simulations under high anthropogenic emissions. Earths Future 12, e2023EF003629 (2024).

    Article  Google Scholar 

  17. Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y. & Tomas-Burguera, M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip. Rev. Clim. Change 11, e632 (2020).

    Article  Google Scholar 

  19. Slette, I. J. et al. Standardized metrics are key for assessing drought severity. Glob. Change Biol. 26, e1–e3 (2020).

    Article  Google Scholar 

  20. Heim, R. R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 83, 1149–1165 (2002).

    Article  Google Scholar 

  21. McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proc. Eighth Conference on Applied Climatology 179–184 (American Meteorological Society, 1993).

  22. Vicente-Serrano, S. M. et al. Accurate computation of a streamflow drought index. J. Hydrol. Eng. 17, 318–332 (2012).

    Article  Google Scholar 

  23. AghaKouchak, A. A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought. Hydrol. Earth Syst. Sci. 18, 2485–2492 (2014).

    Article  Google Scholar 

  24. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article  Google Scholar 

  25. Kim, D. & Rhee, J. A drought index based on actual evapotranspiration from the Bouchet hypothesis. Geophys. Res. Lett. 43, 10277–10285 (2016).

    Article  Google Scholar 

  26. McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R. & McVicar, T. R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol. Earth Syst. Sci. 17, 1331–1363 (2013).

    Article  Google Scholar 

  27. Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    Article  Google Scholar 

  28. Bevacqua, E. et al. Direct and lagged climate change effects intensified the 2022 European drought. Nat. Geosci. 17, 1100–1107 (2024).

    Article  CAS  Google Scholar 

  29. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).

    Article  PubMed  Google Scholar 

  30. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    Article  CAS  Google Scholar 

  31. McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    Article  PubMed  Google Scholar 

  32. Anderegg, W. R. L. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).

    Article  PubMed  Google Scholar 

  34. Krich, C. et al. Decoupling between ecosystem photosynthesis and transpiration: a last resort against overheating. Environ. Res. Lett. 17, 044013 (2022).

    Article  CAS  Google Scholar 

  35. Novick, K. A. et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. 47, 3561–3589 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Thompson, R. A. et al. Local carbon reserves are insufficient for phloem terpene induction during drought in Pinus edulis in response to bark beetle-associated fungi. New Phytol. 244, 654–669 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Peltier, D. M. P. et al. Carbon starvation following a decade of experimental drought consumes old reserves in Pinus edulis. New Phytol. 240, 92–104 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Jimenez, J., Vande Wouwer, A. & Quijano, N. Dynamic modeling of crop-soil systems to design monitoring and automatic irrigation processes: a review with worked examples. Water 14, 889 (2022).

    Article  CAS  Google Scholar 

  40. Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022).

    Article  CAS  Google Scholar 

  41. Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, S. et al. Response of ecosystem productivity to high vapor pressure deficit and low soil moisture: lessons learned from the global eddy-covariance observations. Earths Future 11, e2022EF003252 (2023).

    Article  Google Scholar 

  43. Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).

    Article  CAS  Google Scholar 

  45. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Mirabel, A., Girardin, M. P., Metsaranta, J., Way, D. & Reich, P. B. Increasing atmospheric dryness reduces boreal forest tree growth. Nat. Commun. 14, 6901 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng, Z. et al. Increasing meteorological drought under climate change reduces terrestrial ecosystem productivity and carbon storage. One Earth 6, 1326–1339 (2023).

    Article  Google Scholar 

  51. Anderegg, W. R. L. et al. A climate risk analysis of Earth’s forests in the 21st century. Science 377, 1099–1103 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. Npj Clim. Atmos. Sci. 6, 205 (2023).

    Article  Google Scholar 

  53. Zhao, M., A, G., Liu, Y. & Konings, A. G. Evapotranspiration frequently increases during droughts. Nat. Clim. Change 12, 1024–1030 (2022).

    Article  Google Scholar 

  54. Mastrotheodoros, T. et al. More green and less blue water in the Alps during warmer summers. Nat. Clim. Change 10, 155–161 (2020).

    Article  Google Scholar 

  55. McNamara, I., Flörke, M., Uschan, T., Baez-Villanueva, O. M. & Herrmann, F. Estimates of irrigation requirements throughout Germany under varying climatic conditions. Agric. Water Manag. 291, 108641 (2024).

    Article  Google Scholar 

  56. Wang, W. et al. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 11, 410–414 (2018).

    Article  CAS  Google Scholar 

  57. Seneviratne, S. I. & Ciais, P. Trends in ecosystem recovery from drought. Nature 548, 164–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Vicente-Serrano, S. M. et al. Global assessment of the standardized evapotranspiration deficit index (SEDI) for drought analysis and monitoring. J. Clim. 31, 5371–5393 (2018).

    Article  Google Scholar 

  59. Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Peña-Gallardo, M. et al. Complex influences of meteorological drought time-scales on hydrological droughts in natural basins of the contiguous Unites States. J. Hydrol. 568, 611–625 (2019).

    Article  Google Scholar 

  61. Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu, H. et al. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun. 13, 1653 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi, E., Rigden, A. J., Tangdamrongsub, N., Jasinski, M. F. & Mueller, N. D. US crop yield losses from hydroclimatic hazards. Environ. Res. Lett. 19, 014005 (2023).

    Article  Google Scholar 

  64. Zhang, J. et al. Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nat. Commun. 12, 5549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Allen, R., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (Food and Agriculture Organization of the United Nations, 1998).

  66. Otkin, J. A. et al. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeorol. 14, 1057–1074 (2013).

    Article  Google Scholar 

  67. Yang, Y. et al. Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, NE, USA. Remote Sens. Environ. 210, 387–402 (2018).

    Article  Google Scholar 

  68. Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).

    Article  Google Scholar 

  69. Chang, Q. et al. Earlier ecological drought detection by involving the interaction of phenology and eco-physiological function. Earths Future 11, e2022EF002667 (2023).

    Article  Google Scholar 

  70. Anderson, M. C. et al. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens. Environ. 174, 82–99 (2016).

    Article  Google Scholar 

  71. Anderson, M. C. et al. Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic. Clim. Res. 70, 215–230 (2016).

    Article  Google Scholar 

  72. Narasimhan, B. & Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 133, 69–88 (2005).

    Article  Google Scholar 

  73. Padrón, R. S. et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481 (2020).

    Article  Google Scholar 

  74. Vicente-Serrano, S. M. et al. Global characterization of hydrological and meteorological droughts under future climate change: the importance of timescales, vegetation-CO2 feedbacks and changes to distribution functions. Int. J. Climatol. 40, 2557–2567 (2020).

    Article  Google Scholar 

  75. Friedrich, K. et al. Reservoir evaporation in the Western United States. Bull. Am. Meteorol. Soc. 99, 167–187 (2018).

    Article  Google Scholar 

  76. Ketchum, D., Hoylman, Z. H., Huntington, J., Brinkerhoff, D. & Jencso, K. G. Irrigation intensification impacts sustainability of streamflow in the Western United States. Commun. Earth Environ. 4, 479 (2023).

    Article  Google Scholar 

  77. Vicente-Serrano, S. M. et al. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain. J. Hydrol. Reg. Stud. 12, 13–32 (2017).

    Article  Google Scholar 

  78. Puy, A., Lo Piano, S. & Saltelli, A. Current models underestimate future irrigated areas. Geophys. Res. Lett. 47, e2020GL087360 (2020).

    Article  Google Scholar 

  79. Guttman, N. B., Wallis, J. R. & Hosking, J. R. M. Spatial comparability of the Palmer Drought Severity Index. JAWRA J. Am. Water Resour. Assoc. 28, 1111–1119 (1992).

    Article  Google Scholar 

  80. Feng, S., Trnka, M., Hayes, M. & Zhang, Y. Why do different drought indices show distinct future drought risk outcomes in the US Great Plains? J. Clim. 30, 265–278 (2017).

    Article  Google Scholar 

  81. Gaitán, E., Monjo, R., Pórtoles, J. & Pino-Otín, M. R. Impact of climate change on drought in Aragon (NE Spain). Sci. Total Environ. 740, 140094 (2020).

    Article  PubMed  Google Scholar 

  82. Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep. 4, 301–312 (2018).

    Article  Google Scholar 

  83. Kukla, G. J. et al. Last interglacial climates. Quat. Res. 58, 2–13 (2002).

    Article  Google Scholar 

  84. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Brewer, S., Cheddadi, R., de Beaulieu, J. L. & Reille, M. The spread of deciduous Quercus throughout Europe since the last glacial period. For. Ecol. Manag. 156, 27–48 (2002).

    Article  Google Scholar 

  86. Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. More efficient plants: a consequence of rising atmospheric CO2? Annu. Rev. Plant Biol. 48, 609–639 (1997).

    Article  CAS  Google Scholar 

  87. Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Adam, D. What a 190-year-old equation says about rainstorms in a changing climate. Proc. Natl Acad. Sci. USA 120, e2304077120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).

    Article  Google Scholar 

  90. Baker, P. A. et al. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J. & Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev. 27, 2316–2340 (2008).

    Article  Google Scholar 

  92. Weij, R. et al. Elevated Southern Hemisphere moisture availability during glacial periods. Nature 626, 319–326 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Drysdale, R. et al. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34, 101–104 (2006).

    Article  CAS  Google Scholar 

  94. Kirby, M. E. C. et al. Pacific southwest United States holocene droughts and pluvials inferred from sediment δ18O(calcite) and grain size data (Lake Elsinore, California). Front. Earth Sci. https://doi.org/10.3389/feart.2019.00074 (2019).

  95. Chen, C. et al. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv. 6, eabb1981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  CAS  Google Scholar 

  97. Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).

    Article  Google Scholar 

  98. Hoek van Dijke, A. J. Comparing forest and grassland drought responses inferred from eddy covariance and Earth observation. Agric. For. Meteorol 341, 109635 (2023).

    Article  Google Scholar 

  99. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  101. Yan, Y. et al. Climate-induced tree-mortality pulses are obscured by broad-scale and long-term greening. Nat. Ecol. Evol. 8, 912–923 (2024).

    Article  PubMed  Google Scholar 

  102. Fensholt, R. et al. Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens. 5, 664–686 (2013).

    Article  Google Scholar 

  103. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Article  Google Scholar 

  104. Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bastos, A. et al. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dyn. 12, 1015–1035 (2021).

    Article  Google Scholar 

  106. Coffel, E. D. & Lesk, C. Recent shift from energy- to moisture-limitation over global croplands. Environ. Res. Lett. 19, 064065 (2024).

    Article  Google Scholar 

  107. Dai, A. Hydroclimatic trends during 1950–2018 over global land. Clim. Dyn. 56, 4027–4049 (2021).

    Article  Google Scholar 

  108. Yang, Y. et al. Disconnection between trends of atmospheric drying and continental runoff. Water Resour. Res. 54, 4700–4713 (2018).

    Article  Google Scholar 

  109. Collignan, J., Polcher, J., Bastin, S. & Quintana-Segui, P. Budyko framework based analysis of the effect of climate change on watershed evaporation efficiency and its impact on discharge over Europe. Water Resour. Res. 59, e2023WR034509 (2023).

    Article  Google Scholar 

  110. Vicente-Serrano, S. M. et al. Climate, irrigation and land cover change explain streamflow trends in countries bordering the Northeast Atlantic. Geophys. Res. Lett. 46, 10821–10833 (2019).

    Article  Google Scholar 

  111. Garrido-Perez, J. M. et al. Examining the outstanding Euro-Mediterranean drought of 2021–2022 and its historical context. J. Hydrol. 630, 130653 (2024).

    Article  Google Scholar 

  112. Wise, E. K., Woodhouse, C. A., Mccabe, G. J., Pederson, G. T. & St-Jacques, J.-M. Hydroclimatology of the Missouri river basin. J. Hydrometeorol. 19, 161–182 (2018).

    Article  Google Scholar 

  113. Vicente-Serrano, S. M. et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001 (2014).

    Article  Google Scholar 

  114. Scheff, J. & Frierson, D. M. W. Scaling potential evapotranspiration with greenhouse warming. J. Clim. 27, 1539–1558 (2014).

    Article  Google Scholar 

  115. Adeyeri, O. E. et al. Multivariate drought monitoring, propagation and projection using bias-corrected general circulation models. Earths Future 11, e2022EF003303 (2023).

    Article  Google Scholar 

  116. Vicente-Serrano, S. M. et al. Do CMIP models capture long-term observed annual precipitation trends? Clim. Dyn. 58, 2825–2842 (2022).

    Article  Google Scholar 

  117. Beven, K. et al. Developing observational methods to drive future hydrological science: can we make a start as a community? Hydrol. Process. 34, 868–873 (2020).

    Article  Google Scholar 

  118. van den Hurk, B. et al. Acceleration of land surface model development over a decade of glass. Bull. Am. Meteorol. Soc. 92, 1593–1600 (2011).

    Article  Google Scholar 

  119. Giardina, F., Gentine, P., Konings, A. G., Seneviratne, S. I. & Stocker, B. D. Diagnosing evapotranspiration responses to water deficit across biomes using deep learning. New Phytol. 240, 968–983 (2023).

    Article  PubMed  Google Scholar 

  120. Berg, A. & Sheffield, J. Historic and projected changes in coupling between soil moisture and evapotranspiration (ET) in CMIP5 models confounded by the role of different ET components. J. Geophys. Res. Atmos. 124, 5791–5806 (2019).

    Article  Google Scholar 

  121. Tallaksen, L. M. & Stahl, K. Spatial and temporal patterns of large-scale droughts in Europe: model dispersion and performance. Geophys. Res. Lett. 41, 429–434 (2014).

    Article  Google Scholar 

  122. Barella-Ortiz, A. & Quintana-Seguí, P. Evaluation of drought representation and propagation in Regional Climate Model simulations over Spain. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–32 (2018).

    Google Scholar 

  123. Guo, H., Hou, Y., Yang, Y. & McVicar, T. R. Global evaluation of simulated high- and low-flows from 23 macro-scale models. J. Hydrometeorol. https://doi.org/10.1175/JHM-D-23-0176.1 (2024).

    Article  Google Scholar 

  124. Forootan, E. et al. Global droughts are more severe than they appear in hydrological models: an investigation through a Bayesian merging of GRACE and GRACE-FO data into a water balance model. SSRN https://doi.org/10.2139/ssrn.4482334 (2023).

  125. Gentine, P. et al. Coupling between the terrestrial carbon and water cycles—a review. Environ. Res. Lett. 14, 083003 (2019).

    Article  CAS  Google Scholar 

  126. Anav, A. et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J. Clim. 26, 6801–6843 (2013).

    Article  Google Scholar 

  127. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article  Google Scholar 

  128. Green, J. K., Zhang, Y., Luo, X. & Keenan, T. F. Systematic underestimation of canopy conductance sensitivity to drought by Earth system models. AGU Adv. 5, e2023AV001026 (2024).

    Article  Google Scholar 

  129. Mahowald, N. et al. Projections of leaf area index in Earth system models. Earth Syst. Dyn. 7, 211–229 (2016).

    Article  Google Scholar 

  130. Park, H. & Jeong, S. Leaf area index in Earth system models: how the key variable of vegetation seasonality works in climate projections. Environ. Res. Lett. 16, 034027 (2021).

    Article  Google Scholar 

  131. Song, X., Wang, D.-Y., Li, F. & Zeng, X.-D. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Adv. Clim. Change Res. 12, 584–595 (2021).

    Article  Google Scholar 

  132. Liu, J. & Lu, Y. How well do CMIP6 models simulate the greening of the Tibetan Plateau?. Remote Sens 14, 4633 (2022).

    Article  Google Scholar 

  133. Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).

    Article  CAS  Google Scholar 

  134. Miller, D. L. et al. Increased photosynthesis during spring drought in energy-limited ecosystems. Nat. Commun. 14, 7828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, L. et al. Increasingly negative tropical water–interannual CO2 growth rate coupling. Nature 618, 755–760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. McDowell, N. G., Brodribb, T. J. & Nardini, A. Hydraulics in the 21st century. New Phytol. 224, 537–542 (2019).

    Article  PubMed  Google Scholar 

  137. McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300 (2016).

    Article  Google Scholar 

  138. Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

    Article  PubMed  Google Scholar 

  139. Ndehedehe, C. E. et al. Understanding global groundwater-climate interactions. Sci. Total Environ. 904, 166571 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. McColl, K. A., Salvucci, G. D. & Gentine, P. Surface flux equilibrium theory explains an empirical estimate of water-limited daily evapotranspiration. J. Adv. Model. Earth Syst. 11, 2036–2049 (2019).

    Article  Google Scholar 

  141. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article  CAS  Google Scholar 

  142. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article  Google Scholar 

  143. Lee, J. & Hohenegger, C. Weaker land–atmosphere coupling in global storm-resolving simulation. Proc. Natl Acad. Sci. USA 121, e2314265121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Douville, H. & Willett, K. M. A drier than expected future, supported by near-surface relative humidity observations. Sci. Adv. 9, eade6253 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Douville, H. et al. Water cycle changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.010

  146. Medlyn, B. E. et al. How do leaf and ecosystem measures of water-use efficiency compare? New Phytol. 216, 758–770 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).

    Article  Google Scholar 

  148. Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article  CAS  Google Scholar 

  149. Kauwe, M. G. D., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? New Phytol. https://doi.org/10.1111/nph.17540 (2021).

    Article  PubMed  Google Scholar 

  150. Vicente-Serrano, S. M. et al. The uncertain role of rising atmospheric CO2 on global plant transpiration. Earth Sci. Rev 230, 104055 (2022).

    Article  CAS  Google Scholar 

  151. Lesk, C. S., Winter, J. M. & Mankin, J. S. Projected runoff declines from plant physiological effects on precipitation. Nat. Water 3, 167–177 (2025).

    Article  Google Scholar 

  152. Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309, 1360–1362 (2005).

    Article  PubMed  Google Scholar 

  153. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2020).

    Article  PubMed  Google Scholar 

  154. Pan, Y. et al. Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nat. Ecol. Evol. 6, 315–323 (2022).

    Article  PubMed  Google Scholar 

  155. Xu, Z. et al. Interactive effects of elevated CO2, drought and warming on plants. J. Plant Growth Regul. 32, 692–707 (2013).

    Article  CAS  Google Scholar 

  156. Liang, X. et al. Stomatal responses of terrestrial plants to global change. Nat. Commun. 14, 2188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Marchand, W. et al. Strong overestimation of water-use efficiency responses to rising CO2 in tree-ring studies. Glob. Change Biol. 26, 4538–4558 (2020).

    Article  Google Scholar 

  158. Deryng, D. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 6, 786–790 (2016).

    Article  Google Scholar 

  159. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article  Google Scholar 

  160. Vicente-Serrano, S. M. & Beguería, S. Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge et al. Int. J. Climatol. 36, 2120–2131 (2016).

    Article  Google Scholar 

  161. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article  Google Scholar 

  162. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron. J. 101, 426–437 (2009).

    Article  Google Scholar 

  164. Hsiao, T. C. et al. Aquacrop—The FAO crop model to simulate yield response to water: III. parameterization and testing for maize. Agron. J. 101, 448–459 (2009).

    Article  Google Scholar 

  165. Zhang, D., Jiao, X., Du, Q., Song, X. & Li, J. Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars. Agric. Water Manag. 199, 22–33 (2018).

    Article  Google Scholar 

  166. de Almeida, C. D. G. C. et al. Assessing different methodologies for irrigation scheduling in protected environment: a case study of green bell pepper. Irrig. Sci. 41, 107–120 (2023).

    Article  Google Scholar 

  167. David, T. S., Ferreira, M. I., Cohen, S., Pereira, J. S. & David, J. S. Constraints on transpiration from an evergreen oak tree in southern Portugal. Agric. For. Meteorol. 122, 193–205 (2004).

    Article  Google Scholar 

  168. Dekker, S. C., Groenendijk, M., Booth, B. B. B., Huntingford, C. & Cox, P. M. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth Syst. Dyn. 7, 525–533 (2016).

    Article  Google Scholar 

  169. Chaves, M. M. et al. Controlling stomatal aperture in semi-arid regions—the dilemma of saving water or being cool? Plant Sci. 251, 54–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Banerjee, T. & Linn, R. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9, 198 (2018).

    Article  Google Scholar 

  171. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).

    Article  Google Scholar 

  172. Hobbins, M., Wood, A., Streubel, D. & Werner, K. What drives the variability of evaporative demand across the conterminous United States? J. Hydrometeorol. 13, 1195–1214 (2012).

    Article  Google Scholar 

  173. Blyth, E. et al. Evaluating the JULES land surface model energy fluxes using FLUXNET data. J. Hydrometeorol. 11, 509–519 (2010).

    Article  Google Scholar 

  174. Holman, K. D., Mikkelson, K. M. & Llewellyn, D. K. Characterizing spatial heterogeneity in reservoir evaporation within the Rio Grande Basin using a coupled version of the Weather, Research and Forecasting Model. J. Hydrometeorol. 24, 1437–1456 (2023).

    Article  Google Scholar 

  175. Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrol. Earth Syst. Sci. 21, 1189–1224 (2017).

    Article  Google Scholar 

  176. Wang, K., Dickinson, R. E. & Liang, S. Global atmospheric evaporative demand over land from 1973 to 2008. J. Clim. 25, 8353–8361 (2012).

    Article  Google Scholar 

  177. Hobbins, M. T. et al. The evaporative demand drought index. Part I: linking drought evolution to variations in evaporative demand. J. Hydrometeorol. 17, 1745–1761 (2016).

    Article  Google Scholar 

  178. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements (FAO, 1998).

  179. Katerji, N. & Rana, G. Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour. Manag. 25, 1581–1600 (2011).

    Article  Google Scholar 

  180. Pereira, L. S., Allen, R. G., Smith, M. & Raes, D. Crop evapotranspiration estimation with FAO56: past and future. Agric. Water Manag. 147, 4–20 (2015).

    Article  Google Scholar 

  181. Penman, H. L. Natural evaporation from open water, hare soil and grass. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 193, 120–145 (1948).

    CAS  Google Scholar 

  182. Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100, 81–92 (1972).

    Article  Google Scholar 

  183. Rotstayn, L. D., Roderick, M. L. & Farquhar, G. D. A simple pan-evaporation model for analysis of climate simulations: evaluation over Australia. Geophys. Res. Lett. https://doi.org/10.1029/2006GL027114 (2006).

Download references

Acknowledgements

This work has been supported by the research projects TED2021-129152B-C41 and PID2022-137244OB-I00, financed by the Spanish Ministry of Science and FEDER, the Ministry for the Ecological Transition and the Demographic Challenge (MITECO) and the European Commission NextGenerationEU (Regulation EU 2020/2094), project CSC2300000, through CSIC’s Interdisciplinary Thematic Platform Clima (PTI-Clima), and GLANCE ‘AGricultural Land AbandoNment and ClimatE change impacts on the water, energy and vegetation carbon cycles in the Mediterranean region’ (ESA contract no. 4000145543/24/I-LR). CSIC’s Interdisciplinary Thematic Platform Clima (PTI-Clima), contract no. CSC2023-02-00 financed by the Ministry for the Ecological Transition and the Demographic Challenge (MITECO) and the European Commission NextGenerationEU (Regulation EU 2020/2094) and GLANCE (ESA contract no. 4000145543/24/I-LR). L.G.-S. is partially financed by national funds through FCT – Fundação para a Ciência e a Tecnologia under the project UIDB/00006/2020 (https://doi.org/10.54499/UIDB/00006/2020), and project UID/00006/2025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio M. Vicente-Serrano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Corey Lesk and Dominik Schumacher for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Serrano, S.M., Domínguez-Castro, F., Beguería, S. et al. Atmospheric drought indices in future projections. Nat Water 3, 374–387 (2025). https://doi.org/10.1038/s44221-025-00416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00416-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing