Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assessment of permeance and selectivity of thin-film composite polyamide membranes for diverse applications

Abstract

Thin-film composite polyamide membranes present a diverse range of aqueous-based applications such as the removal of harmful contaminants and the fractionation of precious resources from water and wastewater. However, their separation performance is typically limited by the permeance–selectivity trade-off. Although the trade-offs related to desalination have been well established, other important membrane-based applications have not been adequately studied. Here we establish various performance plots in terms of permeance–water/solute selectivity and permeance–solute/solute selectivity with respect to the removal or fractionation for diverse separation applications. This will help to bridge the gap between material-level membrane performance and system-level demands for potential applications. We also establish a convenient framework for assessing and benchmarking high-performance membranes in various fields and suggest potential strategies for optimizing membrane properties and/or system performance, which could increase the separation efficiency for membrane applications. This Review provides insightful knowledge and information for researchers and engineers involved in membrane technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Permeance–selectivity plots of water permeance (A) versus water/salts (A/B) selectivity of polyamide membranes.
Fig. 2: Permeance–selectivity plots of water permeance (A) versus water/solutes (A/B) selectivity of polyamide membranes.
Fig. 3: Permeance–selectivity plots of water permeance (A) versus water/contaminants (A/B) selectivity of polyamide membranes.
Fig. 4: Permeance–selectivity plots of water permeance (A) versus salts/salts (B/B) selectivity of the polyamide TFC membranes.
Fig. 5: Permeance–selectivity plots for Li/Mg separation and dye/salt separation using polyamide TFC membranes.
Fig. 6: Membrane selection and optimization based on permeance–selectivity plots.
Fig. 7: Schematic presentation of the future perspectives for performance enhancement.

Similar content being viewed by others

Data availability

Source data for the figures are in Excel format (.xlsx) and available publicly via figshare at https://doi.org/10.6084/m9.figshare.28539212.v2 (ref. 124).

References

  1. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  2. Tang, C. Y. et al. Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52, 10215–10223 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Peng, L. E. et al. A critical review on porous substrates of TFC polyamide membranes: mechanisms, membrane performances, and future perspectives. J. Membr. Sci. 641, 119871 (2022).

    Article  CAS  Google Scholar 

  5. Freger, V. & Ramon, G. Z. Polyamide desalination membranes: formation, structure, and properties. Prog. Polym. Sci. 122, 101451 (2021).

    Article  CAS  Google Scholar 

  6. Wang, K. et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem. Soc. Rev. 51, 672–719 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Z., Guo, H. & Tang, C. Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 590, 117297 (2019). This study establishes an upper bound of water permeance–water/NaCl selectivity for polyamide membranes, providing a valuable framework for evaluating and benchmarking desalination performance of membranes.

    Article  Google Scholar 

  8. Yang, Z., Long, L., Wu, C. & Tang, C. Y. High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound. ACS EST Eng. 2, 377–390 (2022). This study analyses the permeance, water/Na2SO4 selectivity and NaCl/Na2SO4 selectivity for polyamide membrane and examines the system-scale performance in relation to the upper bound.

    Article  CAS  Google Scholar 

  9. Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011). This study investigates the mechanisms related to the trade-off between water permeance and water/NaCl selectivity, highlighting that high water/NaCl permeability selectivity results from the combined effect of water/NaCl solubility and diffusivity selectivity, with diffusivity selectivity playing a more significant role.

    Article  CAS  Google Scholar 

  10. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991). This study establishes an upper-bound relationship between gas permeability and gas/gas selectivity for gas separation membranes, highlighting the key influence of diffusion coefficients on separation performance.

    Article  CAS  Google Scholar 

  11. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  12. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017). This work provides a basis for the permeance–selectivity trade-off in membranes, explores the origin of trade-off behaviour and suggests approaches to overcome the trade-off.

    Article  PubMed  Google Scholar 

  13. Lim, Y. J., Goh, K., Kurihara, M. & Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review. J. Membr. Sci. 629, 119292 (2021).

    Article  CAS  Google Scholar 

  14. Ritt, C. L. et al. The open membrane database: synthesis–structure–performance relationships of reverse osmosis membranes. J. Membr. Sci. 641, 119927 (2022).

    Article  CAS  Google Scholar 

  15. Kim, M., Park, S.-J. & Lee, J.-H. Ultrahighly Li-selective nanofiltration membranes prepared via tailored interfacial polymerization. J. Membr. Sci. 700, 122728 (2024).

    Article  CAS  Google Scholar 

  16. Liu, Y. et al. Boosting the performance of nanofiltration membranes in removing organic micropollutants: trade-off effect, strategy evaluation, and prospective development. Environ. Sci. Technol. 56, 15220–15237 (2022). This work assesses the trade-off between water permeance and water/organic micropollutants (OMP) selectivity of nanofiltration membranes, highlighting potential enhancements in OMP removal and salt/OMP selectivity in the future advancements of nanofiltration membranes.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J., Wang, T., Dai, R., Wu, Z. & Wang, Z. Trade-off between endocrine-disrupting compound removal and water permeance of the polyamide nanofiltration membrane: phenomenon and molecular insights. Environ. Sci. Technol. 58, 9416–9426 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, H. et al. Tweak in puzzle: tailoring membrane chemistry and structure toward targeted removal of organic micropollutants for water reuse. Environ. Sci. Technol. Lett. 9, 247–257 (2022).

    Article  CAS  Google Scholar 

  19. Güler, E., Kaya, C., Kabay, N. & Arda, M. Boron removal from seawater: state-of-the-art review. Desalination 356, 85–93 (2015).

    Article  Google Scholar 

  20. Khanzada, N. K. et al. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review. J. Membr. Sci. 598, 117672 (2020).

    Article  CAS  Google Scholar 

  21. Jeffrey, P., Yang, Z. & Judd, S. J. The status of potable water reuse implementation. Water Res. 214, 118198 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Xie, M., Shon, H. K., Gray, S. R. & Elimelech, M. Membrane-based processes for wastewater nutrient recovery: technology, challenges, and future direction. Water Res. 89, 210–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, G. et al. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Res. 89, 151–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Choi, S.-J., Crane, L., Kang, S., Boyer, T. H. & Perreault, F. Removal of urea in ultrapure water system by urease-coated reverse osmosis membrane. Water Res. X 22, 100211 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, T., Zheng, W., Wang, Q., Wu, Z. & Wang, Z. Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: a comprehensive review. Desalination 546, 116205 (2023).

    Article  CAS  Google Scholar 

  26. Feng, X., Peng, D., Zhu, J., Wang, Y. & Zhang, Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep. Purif. Technol. 285, 120228 (2022).

    Article  CAS  Google Scholar 

  27. DuChanois, R. M. et al. Prospects of metal recovery from wastewater and brine. Nat. Water 1, 37–46 (2023).

    Article  CAS  Google Scholar 

  28. Edzwald, J. K. & Haarhoff, J. Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation. Water Res. 45, 5428–5440 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, R., He, R., He, T., Elimelech, M. & Lin, S. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. Nat. Water 1, 291–300 (2023).

    Article  Google Scholar 

  30. Li, X. et al. Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Membr. Sci. 591, 117317 (2019).

    Article  CAS  Google Scholar 

  31. Zhou, H., Li, X., Li, Y., Dai, R. & Wang, Z. Tuning of nanofiltration membrane by multifunctionalized nanovesicles to enable an ultrahigh dye/salt separation at high salinity. J. Membr. Sci. 644, 120094 (2022).

    Article  CAS  Google Scholar 

  32. Guo, H. et al. Nanofiltration for drinking water treatment: a review. Front. Chem. Sci. Eng. 16, 681–698 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, H. et al. Scalable preparation of ultraselective and highly permeable fully aromatic polyamide nanofiltration membranes for antibiotic desalination. Angew. Chem. Int. Ed. 63, e202402509 (2024).

    Article  CAS  Google Scholar 

  34. Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Membr. Sci. 107, 1–21 (1995).

    Article  CAS  Google Scholar 

  35. Liu, W. et al. Pressure-driven membrane desalination. Nat. Rev. Methods Primers 4, 10 (2024). This study discusses various important methodological aspects of pressure-driven membrane desalination, providing valuable guidelines on understanding the transport mechanisms, improving separation performance and designing new system configurations for desalination membranes.

    Article  Google Scholar 

  36. Wang, R. & Lin, S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J. Membr. Sci. 620, 118809 (2020).

    Article  Google Scholar 

  37. Wang, L. et al. Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model. Environ. Sci. Technol. 55, 16665–16675 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Biesheuvel, P. M., Rutten, S. B., Ryzhkov, I. I., Porada, S. & Elimelech, M. Theory for salt transport in charged reverse osmosis membranes: novel analytical equations for desalination performance and experimental validation. Desalination 557, 116580 (2023).

    Article  CAS  Google Scholar 

  39. Blankert, B., Martinez, F. D., Vrouwenvelder, J. S. & Picioreanu, C. Solution–diffusion–electromigration approximation model (SDE-A) for strongly charged, weakly charged and effectively uncharged reverse osmosis membranes. J. Membr. Sci. 679, 121675 (2023).

    Article  CAS  Google Scholar 

  40. Wang, J., Mo, Y., Mahendra, S. & Hoek, E. M. V. Effects of water chemistry on structure and performance of polyamide composite membranes. J. Membr. Sci. 452, 415–425 (2014).

    Article  CAS  Google Scholar 

  41. Yip, N. Y. & Elimelech, M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 45, 10273–10282 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014).

    Article  CAS  Google Scholar 

  43. Chen, X., Boo, C. & Yip, N. Y. Influence of solute molecular diameter on permeability–selectivity tradeoff of thin-film composite polyamide membranes in aqueous separations. Water Res. 201, 117311 (2021). This study investigates the permeance–selectivity trade-off related to neutral solutes in the thin-film composite membranes, highlighting a potential correlation between the slope of trade-off lines and the sizes of the solute and solvent molecules.

    Article  CAS  PubMed  Google Scholar 

  44. Sarkar, P. et al. Fast water transport through sub-5 nm polyamide nanofilms: the new upper-bound of the permeance–selectivity trade-off in nanofiltration. J. Mater. Chem. A 9, 20714–20724 (2021).

    Article  CAS  Google Scholar 

  45. Sarkar, P., Wu, C., Yang, Z. & Tang, C. Y. Empowering ultrathin polyamide membranes at the water–energy nexus: strategies, limitations, and future perspectives. Chem. Soc. Rev. 53, 4374–4399 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, C., Long, L., Yang, Z. & Tang, C. Y. Porous substrate affects fouling propensity of thin-film composite nanofiltration membranes. J. Membr. Sci. Lett. 2, 100036 (2022).

    Article  Google Scholar 

  47. Gui, L. et al. Ultrafast ion sieving from honeycomb-like polyamide membranes formed using porous protein assemblies. Nano Lett. 20, 5821–5829 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, J., Wang, Z., Li, W., Wang, X. & Su, Y. Graphene quantum dots enhanced ultrathin nanofilms and arginine engineered nanofiltration membranes with ultra-high separation performance. Desalination 547, 116232 (2023).

    Article  CAS  Google Scholar 

  49. Yang, Z. et al. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications. Environ. Sci. Technol. 54, 15563–15583 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Z., Guo, H., Yao, Z.-k, Mei, Y. & Tang, C. Y. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ. Sci. Technol. 53, 5301–5308 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Li, C.-g, Liu, C., Xu, W.-h, Shan, M.-g & Wu, H.-x Formation mechanisms and supervisory prediction of scaling in water supply pipelines: a review. Water Res. 222, 118922 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Qian, X. et al. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J. Membr. Sci. 645, 120041 (2022).

    Article  CAS  Google Scholar 

  53. Lau, W. J. et al. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80, 306–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Dai, R., Li, J. & Wang, Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Adv. Colloid Interface Sci. 282, 102204 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Guo, C. et al. One-step construction of the positively/negatively charged ultrathin janus nanofiltration membrane for the separation of Li+ and Mg2+. ACS Appl. Mater. Interfaces 15, 4814–4825 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y., Jason Niu, Q., Hou, Y. & Sun, H. Effect of interfacial polymerization monomer design on the performance and structure of thin film composite nanofiltration and reverse osmosis membranes: a review. Sep. Purif. Technol. 330, 125282 (2024).

    Article  CAS  Google Scholar 

  57. Zhao, Z. et al. Positively charged polyamine nanofiltration membrane for precise ion–ion separation. ACS Appl. Mater. Interfaces 15, 48695–48704 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. van Voorthuizen, E. M., Zwijnenburg, A. & Wessling, M. Nutrient removal by NF and RO membranes in a decentralized sanitation system. Water Res. 39, 3657–3667 (2005).

    Article  PubMed  Google Scholar 

  59. Blöcher, C., Niewersch, C. & Melin, T. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Res. 46, 2009–2019 (2012).

    Article  PubMed  Google Scholar 

  60. Chong, S., Sen, T. K., Kayaalp, A. & Ang, H. M. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—a state-of-the-art review. Water Res. 46, 3434–3470 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Popova, A. et al. Evaluating the potential of nanofiltration membranes for removing ammonium, nitrate, and nitrite in drinking water sources. Water Res. 244, 120484 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Galiano, F. et al. Arsenic water decontamination by a bioinspired As-sequestering porous membrane. Nat. Water 2, 350–359 (2024).

    Article  CAS  Google Scholar 

  63. Xu, S.-J. et al. Surfactants attached thin film composite (TFC) nanofiltration (NF) membrane via intermolecular interaction for heavy metals removal. J. Membr. Sci. 642, 119930 (2022).

    Article  CAS  Google Scholar 

  64. Lu, C. et al. In situ characterization of dehydration during ion transport in polymeric nanochannels. J. Am. Chem. Soc. 143, 14242–14252 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Shao, W. et al. Adsorption of arsenate and arsenite anions from aqueous medium by using metal(III)-loaded amberlite resins. Hydrometallurgy 91, 138–143 (2008).

    Article  CAS  Google Scholar 

  66. Lan, N., Wang, K. Y., Weber, M., Maletzko, C. & Chung, T.-S. Investigation of novel molecularly tunable thin-film nanocomposite nanofiltration hollow fiber membranes for boron removal. J. Membr. Sci. 620, 118887 (2021).

    Article  CAS  Google Scholar 

  67. Farhat, A., Ahmad, F. & Arafat, H. Analytical techniques for boron quantification supporting desalination processes: a review. Desalination 310, 9–17 (2013).

    Article  CAS  Google Scholar 

  68. Croll, H., Soroush, A., Pillsbury, M. E. & Romero-Vargas Castrillón, S. Graphene oxide surface modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine (NDMA) removal. Sep. Purif. Technol. 210, 973–980 (2019).

    Article  CAS  Google Scholar 

  69. Wang, H., Zeng, J., Dai, R. & Wang, Z. Understanding rejection mechanisms of trace organic contaminants by polyamide membranes via data-knowledge co-driven machine learning. Environ. Sci. Technol. 58, 5878–5888 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Shin, M. G. et al. Critical review and comprehensive analysis of trace organic compound (TOrC) removal with polyamide RO/NF membranes: mechanisms and materials. Chem. Eng. J. 427, 130957 (2022).

    Article  CAS  Google Scholar 

  71. Fujioka, T., Kodamatani, H., Nghiem, L. D. & Shintani, T. Transport of N-nitrosamines through a reverse osmosis membrane: role of molecular size and nitrogen atoms. Environ. Sci. Technol. Lett. 6, 44–48 (2019).

    Article  CAS  Google Scholar 

  72. Wang, T., Han, H., Wu, Z., Dai, R. & Wang, Z. Humic acid modified selective nanofiltration membrane for efficient separation of PFASs and mineral salts. ACS ES&T Water 2, 1152–1160 (2022).

    Article  CAS  Google Scholar 

  73. Guo, H. et al. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environ. Sci. Technol. Lett. 3, 332–338 (2016).

    Article  CAS  Google Scholar 

  74. Xiao, F. et al. Cross-national challenges and strategies for PFAS regulatory compliance in water infrastructure. Nat. Water 1, 1004–1015 (2023).

    Article  Google Scholar 

  75. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sarkar, P., Modak, S. & Karan, S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Adv. Funct. Mater. 31, 2007054 (2021).

    Article  CAS  Google Scholar 

  77. Wu, X. et al. A critical review on polyamide and polyesteramide nanofiltration membranes: emerging monomeric structures and interfacial polymerization strategies. Desalination 577, 117379 (2024).

    Article  CAS  Google Scholar 

  78. Yao, Y., Ge, X., Yin, Y., Minjarez, R. & Tong, T. Antiscalants for mitigating silica scaling in membrane desalination: effects of molecular structure and membrane process. Water Res. 246, 120701 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Cheng, P. et al. Regulating interfacial polymerization via constructed 2D metal–organic framework interlayers for fabricating nanofiltration membranes with enhanced performance. Desalination 544, 116134 (2022).

    Article  CAS  Google Scholar 

  80. Long, L. et al. NaHCO3 addition enhances water permeance and Ca/haloacetic acids selectivity of nanofiltration membranes for drinking water treatment. Water Res. 242, 120255 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Foo, Z. H., Rehman, D., Bouma, A. T., Monsalvo, S. & Lienhard, J. H. Lithium concentration from salt-lake brine by Donnan-enhanced nanofiltration. Environ. Sci. Technol. 57, 6320–6330 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Choe, G. et al. Re-evaluation of battery-grade lithium purity toward sustainable batteries. Nat. Commun. 15, 1185 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yasmeen, M., Nawaz, M. S., Khan, S. J., Ghaffour, N. & Khan, M. Z. Recovering and reuse of textile dyes from dyebath effluent using surfactant driven forward osmosis to achieve zero hazardous chemical discharge. Water Res. 230, 119524 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Zhao, R. et al. Amino acid-based loose polyamide nanofiltration membrane with ultrahigh water permeance for efficient dye/salt separation. J. Membr. Sci. 673, 121477 (2023).

    Article  CAS  Google Scholar 

  85. Liu, L. et al. Fabrication and characterization of 2-aminophenol-4-sulfonic acid-integrated polyamide loose nanofiltration membrane. J. Membr. Sci. 640, 119867 (2021).

    Article  CAS  Google Scholar 

  86. Wang, R., Zhang, J., Tang, C. Y. & Lin, S. Understanding selectivity in solute–solute separation: definitions, measurements, and comparability. Environ. Sci. Technol. 56, 2605–2616 (2022). This study evaluates the solute–solute selectivity using three types of membrane process with different driving forces, providing important insights to the definition and measurements of selectivity.

    Article  CAS  PubMed  Google Scholar 

  87. Labban, O., Liu, C., Chong, T. H. & Lienhard V, J. H. Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J. Membr. Sci. 521, 18–32 (2017).

    Article  CAS  Google Scholar 

  88. Zhai, X., Wang, Y.-L., Dai, R., Li, X. & Wang, Z. Roles of anion–cation coupling transport and dehydration-induced ion–membrane interaction in precise separation of ions by nanofiltration membranes. Environ. Sci. Technol. 56, 14069–14079 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Epsztein, R., Cheng, W., Shaulsky, E., Dizge, N. & Elimelech, M. Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in nanofiltration. J. Membr. Sci. 548, 694–701 (2018).

    Article  CAS  Google Scholar 

  90. Ma, Z. et al. A comprehensive review on the recent advances in membrane-based processes for fruit juice concentration. Food Bioprod. Process. 145, 42–66 (2024).

    Article  CAS  Google Scholar 

  91. Pype, M.-L., Lawrence, M. G., Keller, J. & Gernjak, W. Reverse osmosis integrity monitoring in water reuse: the challenge to verify virus removal—a review. Water Res. 98, 384–395 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Suwaileh, W., Johnson, D. & Hilal, N. Membrane desalination and water re-use for agriculture: state of the art and future outlook. Desalination 491, 114559 (2020).

    Article  CAS  Google Scholar 

  93. Wen, Y. et al. Metal–organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci. Adv. 8, eabm4149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Najid, N. et al. Comparison analysis of different technologies for the removal of boron from seawater: a review. J. Environ. Chem. Eng. 9, 105133 (2021).

    Article  CAS  Google Scholar 

  95. Farahbakhsh, J. et al. Direct lithium extraction: a new paradigm for lithium production and resource utilization. Desalination 575, 117249 (2024).

    Article  CAS  Google Scholar 

  96. Xu, X. et al. Analysis of brackish water desalination for municipal uses: case studies on challenges and opportunities. ACS EST Eng. 2, 306–322 (2022).

    Article  CAS  Google Scholar 

  97. Teychene, B., Collet, G., Gallard, H. & Croue, J.-P. A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes. Desalination 310, 109–114 (2013).

    Article  CAS  Google Scholar 

  98. Okamoto, Y. & Lienhard, J. H. How RO membrane permeability and other performance factors affect process cost and energy use: a review. Desalination 470, 114064 (2019).

    Article  CAS  Google Scholar 

  99. Yang, Z., Wu, C. & Tang, C. Y. Making waves: why do we need ultra-permeable nanofiltration membranes for water treatment? Water Res. X 19, 100172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gan, B. et al. Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration. Nat. Commun. 15, 8656 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, S. et al. Integrating anaerobic acidification with two-stage forward osmosis concentration for simultaneously recovering organic matter, nitrogen and phosphorus from municipal wastewater. Water Res. 245, 120595 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Sarkar, P. et al. Microporous poly(triaminoguanidinium-amide) nanofilms with sub-nm precision for ultra-low molecular weight cut-off in nanofiltration. J. Mater. Chem. A 11, 14390–14403 (2023).

    Article  CAS  Google Scholar 

  103. Hu, A. et al. Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: a critical review. Water Res. 234, 119821 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Long, L. et al. Engraving polyamide layers by in situ self-etchable CaCO3 nanoparticles enhances separation properties and antifouling performance of reverse osmosis membranes. Environ. Sci. Technol. 58, 6435–6443 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Dai, R., Wang, X., Tang, C. Y. & Wang, Z. Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds. Environ. Sci. Technol. 54, 7619–7628 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Long, L., Wu, C., Yang, Z. & Tang, C. Y. Carbon nanotube interlayer enhances water permeance and antifouling performance of nanofiltration membranes: mechanisms and experimental evidence. Environ. Sci. Technol. 56, 2656–2664 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, C. et al. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nat. Commun. 14, 1112 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Straub, A. P. Perfecting size-selective membrane separations. Nat. Water 2, 509–510 (2024).

    Article  Google Scholar 

  109. Ji, Y.-L. et al. Roll-to-roll fabrication of large-area metal–organic framework-based membranes for high-performance aqueous separations. Nat. Water 2, 183–192 (2024).

    Article  CAS  Google Scholar 

  110. Wu, S. et al. Next-generation desalination membranes empowered by novel materials: where are we now? Nanomicro Lett. 17, 91 (2024).

    PubMed  PubMed Central  Google Scholar 

  111. Wang, F., Yang, Z. & Tang, C. Y. Modeling water transport in interlayered thin-film nanocomposite membranes: gutter effect vs funnel effect. ACS EST Eng. 2, 2023–2033 (2022).

    Article  CAS  Google Scholar 

  112. Shao, S. et al. Nanofiltration membranes with crumpled polyamide films: a critical review on mechanisms, performances, and environmental applications. Environ. Sci. Technol. 56, 12811–12827 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Dai, R. et al. Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification. Nat. Water 1, 281–290 (2023).

    Article  CAS  Google Scholar 

  114. Gan, Q. et al. Nanofoamed polyamide membranes: mechanisms, developments, and environmental implications. Environ. Sci. Technol. 58, 20812–20829 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Hu, Y., Wang, F., Yang, Z. & Tang, C. Y. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J. Membr. Sci. 675, 121555 (2023).

    Article  CAS  Google Scholar 

  116. Gan, Q. et al. Does surface roughness necessarily increase the fouling propensity of polyamide reverse osmosis membranes by humic acid? Environ. Sci. Technol. 57, 2548–2556 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, X. et al. Elucidating the roles of polyamide layer structural properties in the permeability–selectivity tradeoff governing aqueous separations. ACS EST Eng. 2, 1857–1870 (2022).

    Article  CAS  Google Scholar 

  119. Wang, R., Alghanayem, R. & Lin, S. Multipass nanofiltration for lithium separation with high selectivity and recovery. Environ. Sci. Technol. 57, 14464–14471 (2023). This study reports a multipass nanofiltration method with brine recirculation to achieve ultrahigh Li/Mg selectivity (>1,000) while maintaining high Li recovery, offering a novel approach through system optimization to address the limitations of single-pass nanofiltration in lithium extraction.

    Article  CAS  PubMed  Google Scholar 

  120. Hilal, N., Kim, G. J. & Somerfield, C. Boron removal from saline water: a comprehensive review. Desalination 273, 23–35 (2011).

    Article  CAS  Google Scholar 

  121. Kumar, R., Basak, B. & Jeon, B.-H. Sustainable production and purification of succinic acid: a review of membrane-integrated green approach. J. Clean. Prod. 277, 123954 (2020).

    Article  CAS  Google Scholar 

  122. Blais, H. N., Schroën, K. & Tobin, J. T. A review of multistage membrane filtration approaches for enhanced efficiency during concentration and fractionation of milk and whey. Int. J. Dairy Technol. 75, 749–760 (2022).

    Article  CAS  Google Scholar 

  123. Sauvet-Goichon, B. Ashkelon desalination plant—a successful challenge. Desalination 203, 75–81 (2007).

    Article  CAS  Google Scholar 

  124. Long, L. et al. [Dataset] Assessment of permeance and selectivity of thin-film composite polyamide membranes for diverse applications. figshare https://doi.org/10.6084/m9.figshare.28539212.v2 (2025).

  125. Porter, C. J., Werber, J. R., Zhong, M., Wilson, C. J. & Elimelech, M. Pathways and challenges for biomimetic desalination membranes with sub-nanometer channels. ACS Nano 14, 10894–10916 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, T. et al. Covalent organic framework membrane for efficient removal of emerging trace organic contaminants from water. Nat. Water 1, 1059–1067 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Senior Research Fellow Scheme of Research Grant Council (project number SRFS2021-7S04). We also acknowledge the partial support by a grant from the Research Grants Council (grant number GRF HKU 17201921).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pulak Sarkar or Chuyang Y. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Xi Chen, Jung-Hyun Lee and Shihong Lin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., Wu, C., Shao, S. et al. Assessment of permeance and selectivity of thin-film composite polyamide membranes for diverse applications. Nat Water 3, 668–682 (2025). https://doi.org/10.1038/s44221-025-00431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00431-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing