Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupled chemical–microbial deterioration in stagnant fire hydrant branches threatens drinking water quality

Abstract

Fire hydrants are widely installed in drinking water distribution systems, where stagnant water forms multiple ‘high-risk zones’. The stagnant water quality at hydrant terminals has been poorly studied. Here we show that stagnant water exhibited an 18-fold increase in manganese, a 40-fold increase in total cell counts, a 13-fold increase in adenosine triphosphate and enrichment of opportunistic pathogens compared with flowing water. Notable changes were also observed in microbial communities and dissolved organic matter composition, including shifts in dominant bacterial taxa, transformation of saturated oxidized compounds and generation of unsaturated reduced compounds. This study also explored the ecological mechanisms underlying the covariation of microorganisms and dissolved organic matter after water stagnation. This finding provides an additional possibility for drinking water quality deterioration in drinking water distribution systems, highlighting the potential threat posed by stagnant water in non-consumer terminals (fire hydrants) to water safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of fire hydrant and chemical-microbial water quality comparison between stagnant and flowing water.
Fig. 2: Microbial community analysis.
Fig. 3: Spectroscopic and molecular characterization of DOM.
Fig. 4: Analysis of unique molecules in two water types.
Fig. 5: Analysis of microbial and DOM diversity, community assembly and co-occurrence network.

Similar content being viewed by others

Data availability

Sequence data associated with this project have been deposited in the National Center for Biotechnology Information (NCBI) Short Read Archive database (accession number PRJNA1267700). FT-ICR MS raw data are available via Zenodo at https://doi.org/10.5281/zenodo.17422657 (ref. 99). Source data are provided with this paper.

Code availability

All codes used in this study are available in the Article or its Supplementary Information.

References

  1. Raškauskaitė, R. & Grigonis, V. An approach for the analysis of the accessibility of fire hydrants in urban territories. ISPRS Int. J. Geo-Inf. 8, 587 (2019).

    Google Scholar 

  2. Abrar, A., Kamal, A. S. M. M. & Fahim, A. K. F. Fire risk vulnerability and safety assessment of Farmgate area using fire risk index, Dhaka City and optimization of fire hydrant placement. Progress Disast. Sci. 24, 100384 (2024).

    Google Scholar 

  3. NFPA 1: Fire Code. Section 18.5 (National Fire Protection Association, 2024).

  4. ISO’s PPC Database Reaches 9 Million Hydrants (Verisk, 2018).

  5. Water Supply for Public Fire Protection: A Guide to Recommended Practice in Canada (Fire Underwriters Survey, 2020).

  6. New Zealand Fire Service Firefighting Water Supplies Code of Practice (National Commander New Zealand Fire Service, 2008).

  7. Technical Code for Fire Protection Water Supply and Hydrant Systems (Ministry of Housing and Urban–Rural Development of the People’s Republic of China, 2014).

  8. “14th Five-Year” National Fire Protection Work Plan. Ministry of Emergency Management of the People’s Republic of China https://www.mem.gov.cn/gk/zfxxgkpt/fdzdgknr/202204/P020220414388243662697.pdf (2022).

  9. Prest, E. I., Hammes, F., Kotzsch, S., van Loosdrecht, M. C. & Vrouwenvelder, J. S. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Res. 47, 7131–7142 (2013).

    CAS  PubMed  Google Scholar 

  10. Zlatanovic, L., van der Hoek, J. P. & Vreeburg, J. H. G. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water Res. 123, 761–772 (2017).

    CAS  PubMed  Google Scholar 

  11. Ling, F., Whitaker, R., LeChevallier, M. W. & Liu, W. T. Drinking water microbiome assembly induced by water stagnation. ISME J 12, 1520–1531 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Lautenschlager, K., Boon, N., Wang, Y., Egli, T. & Hammes, F. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res. 44, 4868–4877 (2010).

    CAS  PubMed  Google Scholar 

  13. Huang, C. K. et al. Extended water stagnation in buildings during the COVID-19 pandemic increases the risks posed by opportunistic pathogens. Water Res X 21, 100201 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, S. et al. Study on release and occurrence of typical metals in corrosion products of drinking water distribution systems under stagnation conditions. Environ. Sci. Pollut. Res. Int. 30, 15217–15229 (2023).

    CAS  PubMed  Google Scholar 

  15. Ghoochani, S., Salehi, M., DeSimone, D., Salehi Esfandarani, M. & Bhattacharjee, L. Studying the impacts of non-routine extended schools’ closure on heavy metal release into tap water. Environ. Sci. Water Res. Technol. 8, 1223–1235 (2022).

    CAS  Google Scholar 

  16. Dion-Fortier, A., Rodriguez, M. J., Serodes, J. & Proulx, F. Impact of water stagnation in residential cold and hot water plumbing on concentrations of trihalomethanes and haloacetic acids. Water Res. 43, 3057–3066 (2009).

    CAS  PubMed  Google Scholar 

  17. Kurajica, L., Ujević Bošnjak, M., Kinsela, A. S., Štiglić, J. & Waite, T. D. Heavy metal, organic matter, and disinfection byproduct release from drinking water pipe scales under stagnant conditions. Environ. Sci. Water Res. Technol. 9, 235–248 (2023).

    CAS  Google Scholar 

  18. Maqbool, T. et al. Fluorescence moieties as a surrogate for residual chlorine in three drinking water networks. Chem. Eng. J. 411, 128519 (2021).

    CAS  Google Scholar 

  19. Zhang, H. H. et al. Indoor heating drives water bacterial growth and community metabolic profile changes in building tap pipes during the winter season. Int. J. Environ. Res. Public Health 12, 13649–13661 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Stegen, J. C. et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 7, 11237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    PubMed  Google Scholar 

  22. Chaffron, S. et al. Environmental vulnerability of the global ocean epipelagic plankton community interactome. Sci. Adv. 7, eabg1921 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Revetta, R. P., Pemberton, A., Lamendella, R., Iker, B. & Santo Domingo, J. W. Identification of bacterial populations in drinking water using 16S rRNA-based sequence analyses. Water Res. 44, 1353–1360 (2010).

    CAS  PubMed  Google Scholar 

  24. Chen, L., Li, X., Medema, G., van der Meer, W. & Liu, G. Transition effects in an unchlorinated drinking water system following the introduction of partial reverse osmosis. Nat. Water 1, 961–970 (2023).

    Google Scholar 

  25. Zhang, L. et al. Daily sampling reveals household-specific water microbiome signatures and shared antimicrobial resistomes in premise plumbing. Nat. Water 2, 1178–1194 (2024).

    CAS  Google Scholar 

  26. Hou, C., Chen, L., Dong, Y., Yang, Y. & Zhang, X. Unraveling dissolved organic matter in drinking water through integrated ozonation/ceramic membrane and biological activated carbon process using FT-ICR MS. Water Res. 222, 118881 (2022).

    CAS  PubMed  Google Scholar 

  27. Xu, W. et al. Using ESI FT-ICR MS to characterize dissolved organic matter in salt lakes with different salinity. Environ. Sci. Technol. 54, 12929–12937 (2020).

    CAS  PubMed  Google Scholar 

  28. Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9, 3178 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Hu, A. et al. Ecological networks of dissolved organic matter and microorganisms under global change. Nat. Commun. 13, 3600 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Freeman, E. C. et al. Universal microbial reworking of dissolved organic matter along environmental gradients. Nat. Commun. 15, 187 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, J. et al. Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes. Nat. Commun. 14, 3681 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Jasser, A. O. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect. Water Res. 41, 387–396 (2007).

    CAS  PubMed  Google Scholar 

  33. Siebel, E., Wang, Y., Egli, T. & Hammes, F. Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water. Drinking Water Eng. Sci. 1, 1–6 (2008).

    Google Scholar 

  34. Li, B., Chen, X., Yang, J. Y., Gao, S. & Bai, F. Intracellular ATP concentration is a key regulator of bacterial cell fate. J. Bacteriol. 206, e0020824 (2024).

    PubMed  Google Scholar 

  35. Liu, G. et al. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints. Water Res. 138, 86–96 (2018).

    CAS  PubMed  Google Scholar 

  36. Chen, L., Li, X., van der Meer, W., Medema, G. & Liu, G. Capturing and tracing the spatiotemporal variations of planktonic and particle-associated bacteria in an unchlorinated drinking water distribution system. Water Res. 219, 118589 (2022).

    CAS  PubMed  Google Scholar 

  37. Liu, G. et al. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ. Sci. Technol. 48, 5467–5476 (2014).

    CAS  PubMed  Google Scholar 

  38. Yao, M. et al. Building water quality deterioration during water supply restoration after interruption: Influences of premise plumbing configuration. Water Res. 241, 120149 (2023).

    CAS  PubMed  Google Scholar 

  39. Wang, H. et al. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system. Environ. Sci. Technol. 48, 10624–10633 (2014).

    CAS  PubMed  Google Scholar 

  40. Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W. & Liu, W. T. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Appl. Environ. Microbiol. 78, 7856–7865 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Park, H. D. & Noguera, D. R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38, 3275–3286 (2004).

    CAS  PubMed  Google Scholar 

  42. Lesaulnier, C. C. et al. Bottled aqua incognita: microbiota assembly and dissolved organic matter diversity in natural mineral waters. Microbiome 5, 126 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Logue, J. B. et al. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 10, 533–545 (2016).

    CAS  PubMed  Google Scholar 

  44. Rahmatika, I., Simazaki, D., Kurisu, F., Furumai, H. & Kasuga, I. Occurrence and diversity of nontuberculous mycobacteria affected by water stagnation in building plumbing. Water Supply 23, 5017–5028 (2023).

    CAS  Google Scholar 

  45. Lin, H., Szeinbaum, N. H., DiChristina, T. J. & Taillefert, M. Microbial Mn(IV) reduction requires an initial one-electron reductive solubilization step. Geochim. Cosmochim. Acta 99, 179–192 (2012).

    CAS  Google Scholar 

  46. Li, G. et al. Field studies of manganese deposition and release in drinking water distribution systems: Insight into deposit control. Water Res. 163, 114897 (2019).

    CAS  PubMed  Google Scholar 

  47. Omran, A. M., Abdel-Jaber, G. T. & Ali, M. M. Effect of Cu and Mn on the mechanical properties and microstructure of ductile cast iron. J. Eng. Res. Appl. 4, 90–96 (2014).

    Google Scholar 

  48. Tian, T. et al. Distinct and diverse anaerobic respiration of methanogenic community in response to MnO2 nanoparticles in anaerobic digester sludge. Water Res. 123, 206–215 (2017).

    CAS  PubMed  Google Scholar 

  49. Yao, W. & Millero, F. J. The rate of sulfide oxidation by δMnO2 in seawater. Geochim. Cosmochim. Acta 57, 3359–3365 (1993).

    CAS  Google Scholar 

  50. Carbonell-Barrachina, A. A., Jugsujinda, A., Burlo, F., Delaune, R. D. & Patrick, W. H. Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Res. 34, 216–224 (2000).

    CAS  Google Scholar 

  51. Masscheleyn, P. H., Delaune, R. D. & Patrick, W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25, 1414–1419 (2002).

    Google Scholar 

  52. Cheng, X. et al. Polarity-based fractionation and identification of high-toxicity disinfection by-product precursors in drinking water. Water Res. 286, 124204 (2025).

    CAS  PubMed  Google Scholar 

  53. LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).

    CAS  Google Scholar 

  54. Chen, X. et al. Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord. Water Res. 220, 118690 (2022).

    CAS  PubMed  Google Scholar 

  55. Tao, Y., Du, Y., Deng, Y., Ma, T. & Wang, Y. Degradation of phosphorus-containing natural organic matter facilitates enrichment of geogenic phosphorus in Quaternary aquifer systems: a molecular perspective. J. Hydrol. 620, 129513 (2023).

    CAS  Google Scholar 

  56. Jessen, G. L. et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3, e1601897 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. LaBrie, R. et al. Deep ocean microbial communities produce more stable dissolved organic matter through the succession of rare prokaryotes. Sci. Adv. 8, eabn0035 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, H. Y. et al. The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome 6, 187 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Ren, X. & Chen, H. Effect of residual chlorine on the interaction between bacterial growth and assimilable organic carbon and biodegradable organic carbon in reclaimed water. Sci. Total Environ. 752, 141223 (2021).

    CAS  PubMed  Google Scholar 

  60. Xu, H. et al. Molecular characteristics of dissolved organic nitrogen and its interaction with microbial communities in a prechlorinated raw water distribution system. Environ. Sci. Technol. 54, 1484–1492 (2020).

    CAS  PubMed  Google Scholar 

  61. Tanentzap, A. J. et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl Acad. Sci. USA 116, 24689–24695 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology?. Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Freire-Zapata, V. et al. Microbiome–metabolite linkages drive greenhouse gas dynamics over a permafrost thaw gradient. Nat. Microbiol. 9, 2892–2908 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, K. et al. Disentangling drivers of mudflat intertidal DOM chemodiversity using ecological models. Nat. Commun. 15, 6620 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ning, D. et al. Environmental stress mediates groundwater microbial community assembly. Nat. Microbiol. 9, 490–501 (2024).

    CAS  PubMed  Google Scholar 

  67. Deng, Y. et al. Molecular ecological network analyses. BMC Bioinf. 13, 113 (2012).

    Google Scholar 

  68. Luo, F., Zhong, J., Yang, Y. & Zhou, J. Application of random matrix theory to microarray data for discovering functional gene modules. Phys. Rev. E 73, 031924 (2006).

    Google Scholar 

  69. Yang, J. et al. Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME J. 14, 2313–2324 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, S. et al. Changes of soil dissolved organic matter and its relationship with microbial community along the Hailuogou glacier forefield chronosequence. Environ. Sci. Technol. 57, 4027–4038 (2023).

    CAS  PubMed  Google Scholar 

  71. Park, J. W. et al. Occurrences and changes in bacterial growth-promoting nutrients in drinking water from source to tap: a review. Environ. Sci. Water Res. Technol. 7, 2206–2222 (2021).

    CAS  Google Scholar 

  72. Nescerecka, A., Juhna, T. & Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 135, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  73. Chen, X. et al. Niche differentiation of microbial community shapes vertical distribution of recalcitrant dissolved organic matter in deep-sea sediments. Environ. Int. 178, 108080 (2023).

    CAS  PubMed  Google Scholar 

  74. Zhou, L. et al. Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter. Water Res. 190, 116776 (2021).

    CAS  PubMed  Google Scholar 

  75. Rodríguez-Ramos, T., Nieto-Cid, M., Auladell, A., Guerrero-Feijóo, E. & Varela, M. M. Vertical niche partitioning of archaea and bacteria linked to shifts in dissolved organic matter quality and hydrography in North Atlantic waters. Front. Mar. Sci. 8, 673171 (2021).

  76. Prest, E. I., Hammes, F., van Loosdrecht, M. C. & Vrouwenvelder, J. S. Biological stability of drinking water: controlling factors, methods, and challenges. Front. Microbiol. 7, 45 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Chan, S. et al. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes 5, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Shah Walter, S. R. et al. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nat. Geosci. 11, 334–339 (2018).

    CAS  Google Scholar 

  79. Catalan, N. et al. Treeline displacement may affect lake dissolved organic matter processing at high latitudes and altitudes. Nat. Commun. 15, 2640 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hammes, F. A. & Egli, T. New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environ. Sci. Technol. 39, 3289–3294 (2005).

    CAS  PubMed  Google Scholar 

  81. Hammes, F. et al. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 42, 269–277 (2008).

    CAS  PubMed  Google Scholar 

  82. Nescerecka, A., Hammes, F. & Juhna, T. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining. J. Microbiol. Methods 131, 172–180 (2016).

    CAS  PubMed  Google Scholar 

  83. Fan, M. et al. Disruptive effects of sewage intrusion into drinking water: microbial succession and organic transformation at molecular level. Water Res. 266, 122281 (2024).

    CAS  PubMed  Google Scholar 

  84. Ezzat, L. et al. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 637, 622–630 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  86. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Underwood, G. J. C. et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat. Clim. Change 9, 170–176 (2019).

    Google Scholar 

  89. Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 36, 742–746 (2002).

    CAS  PubMed  Google Scholar 

  90. Pucher, M. et al. staRdom: versatile software for analyzing spectroscopic data of dissolved organic matter in R. Water 11, 2366 (2019).

    CAS  Google Scholar 

  91. Gonsior, M. et al. Changes in dissolved organic matter during the treatment processes of a drinking water plant in Sweden and formation of previously unknown disinfection byproducts. Environ. Sci. Technol. 48, 12714–12722 (2014).

    CAS  PubMed  Google Scholar 

  92. Boutegrabet, L. et al. Attachment of chloride anion to sugars: mechanistic investigation and discovery of a new dopant for efficient sugar ionization/detection in mass spectrometers. Chemistry 18, 13059–13067 (2012).

    CAS  PubMed  Google Scholar 

  93. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veget. Sci. 14, 927–930 (2003).

    Google Scholar 

  94. Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA116, 16892–16898 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 370 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  98. Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fan, M. et al. Stagnant water in fire hydrant branches: overlooked chemical–microbial coupled deterioration in drinking water distribution systems. Zenodo https://doi.org/10.5281/zenodo.17422657 (2025).

  100. Batista-Andrade, J. A. et al. Spatiotemporal analysis of fluorescent dissolved organic matter to identify the impacts of failing sewer infrastructure in urban streams. Water Res. 229, 119521 (2023).

    CAS  Google Scholar 

  101. Osburn, C. L., Handsel, L. T., Mikan, M. P., Paerl, H. W. & Montgomery, M. T. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environ. Sci. Technol. 46, 8628–8636 (2012).

    CAS  PubMed  Google Scholar 

  102. Lei, J., Yang, L. & Zhu, Z. Testing the effects of coastal culture on particulate organic matter using absorption and fluorescence spectroscopy. J. Clean. Prod. 325, 129203 (2021).

    CAS  Google Scholar 

  103. D’Andrilli, J., Junker, J. R., Smith, H. J., Scholl, E. A. & Foreman, C. M. DOM composition alters ecosystem function during microbial processing of isolated sources. Biogeochemistry 142, 281–298 (2019).

    Google Scholar 

  104. Osburn, C. L., Handsel, L. T., Peierls, B. L. & Paerl, H. W. Predicting sources of dissolved organic nitrogen to an estuary from an agro-urban coastal watershed. Environ. Sci. Technol. 50, 8473–8484 (2016).

    CAS  PubMed  Google Scholar 

  105. Amaral, V., Romera-Castillo, C. & Forja, J. Submarine mud volcanoes as a source of chromophoric dissolved organic matter to the deep waters of the Gulf of Cadiz. Sci. Rep. 11, 3200 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hambly, A. C. et al. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy. Water Res. 83, 112–120 (2015).

    CAS  PubMed  Google Scholar 

  107. Hambly, A. C. et al. Fluorescence monitoring at a recycled water treatment plant and associated dual distribution system—implications for cross-connection detection. Water Res. 44, 5323–5333 (2010).

    CAS  PubMed  Google Scholar 

  108. Lee, D. et al. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals. Water Res. 144, 13–25 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work has been financially supported by the National Natural Science Foundation of China (grant nos. 52388101, 52525003 and 52370105 to G.L.; 52170105 to Q.X.).

Author information

Authors and Affiliations

Authors

Contributions

M.F. led the sampling strategy development, data acquisition, data analysis and manuscript writing. Q.X. contributed equally to strategy development and data acquisition, assisted in data analysis and provided overall guidance. X.W. and Z.F. assisted with data acquisition. M.C.M.V.L. and M.P. provided guidance on data analysis and writing. Y.T., J.B.R. and W.V.D.M. contributed editorial and writing guidance. G.L. supervised the entire project from scientific design to data analysis and also contributed to manuscript writing.

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Hans-Jørgen Albrechtsen, Weiyi Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–3, Supplementary Tables 1–6 and Supplementary Figs. 1–6.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 3.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 3

Statistical source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Xu, Q., Wang, X. et al. Coupled chemical–microbial deterioration in stagnant fire hydrant branches threatens drinking water quality. Nat Water 4, 44–57 (2026). https://doi.org/10.1038/s44221-025-00542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00542-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing