Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hierarchically semi-interpenetrating polymer nanofilms for high-performance seawater desalination

Abstract

Thin-film composite polyamide membranes remain the benchmark for water desalination and purification. However, conventional polyamide membranes are greatly limited by the trade-off between water permeance and ion permselectivity, but also susceptible to chlorine degradation and membrane fouling. Here we addressed these issues by molecularly creating hierarchically structured polymer nanofilms featuring polyamide/polyethylene glycol (PEG) semi-interpenetrating polymer networks (semi-IPN) and interconnected hydrated micropores via macromolecule-regulated interfacial polymerization. This strategy enables controlled synthesis of nanofilms with semi-IPN architectures and tunable subnanometre-scale micropores, spanning reverse osmosis to nanofiltration. The resultant semi-IPN networks synergistically enhance water permeance and ion permselectivity to overcome the intrinsic permeability–selectivity trade-off, but also further provide superior resistance to chlorine, biofouling and mineral scaling and long-term operational stability in seawater desalination, outperforming commercial polyamide membranes. This work offers a robust platform for creating hierarchically ordered polymer networks for high-performance seawater desalination to solve the global water crisis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structural design and in situ creation of hierarchically structured polymer nanofilms.
Fig. 2: Microstructures and hydration of semi-IPN polymer nanofilms.
Fig. 3: Ion sieving and fouling resistance of semi-IPN polymer nanofilms.
Fig. 4: Mechanism and multiscale chlorine resistance of semi-IPN polymer nanofilms.
Fig. 5: High-efficiency and sustainable seawater desalination using semi-IPN polymer nanofilms.

Data availability

All data that support the findings in the current study are available within the Article and its Supplementary Information. The relevant raw data for each figure are provided as source or supplementary data files. Source data are provided with this paper.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  2. Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, A. et al. Selective ion transport through hydrated micropores in polymer membranes. Nature 635, 353–358 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Long, M. et al. Electrostatic enhanced surface segregation approach to self-cleaning and antifouling membranes for efficient molecular separation. J. Membr. Sci. 638, 119689 (2021).

    Article  CAS  Google Scholar 

  5. Li, D. et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 5, 99–108 (2022).

    Article  CAS  Google Scholar 

  6. Huang, J. et al. Polymeric membranes with highly homogenized nanopores for ultrafast water purification. Nat. Sustain. 7, 901–909 (2024).

    Article  Google Scholar 

  7. Xia, Y. et al. Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage. Nat. Sustain. 5, 1080–1091 (2022).

    Article  Google Scholar 

  8. Guo, X. et al. Janus channel of membranes enables concurrent oil and water recovery from emulsions. Science 386, 654–659 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  PubMed  Google Scholar 

  10. Zhang, Y. et al. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 382, 202–206 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Dong, R. et al. Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving. Nat. Chem. 11, 136–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, W.-H. et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 16, 337–343 (2021).

    Article  PubMed  Google Scholar 

  13. Karan, S., Jiang, Z. & Livingston, A. G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Tan, Z., Chen, S., Peng, X., Zhang, L. & Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, R. et al. Engineering dual-heterogeneous membrane surface with heterostructured modifier to integrate multi-defense antifouling mechanisms. Chem. Eng. Sci. 11, 100103 (2021).

    CAS  Google Scholar 

  16. Zhang, W. et al. In-situ formation of epoxy derived polyethylene glycol crosslinking network on polyamide nanofiltration membrane with enhanced antifouling performance. J. Membr. Sci. 658, 120713 (2022).

    Article  CAS  Google Scholar 

  17. Bera, P., Trivedi, J. S., Patil, S. D., Saha, N. K. & Jewrajka, S. K. In situ PEGylation of polyamide network of thin film composite membrane by inter-polymer H-bond complex formation. J. Membr. Sci. 656, 120640 (2022).

    Article  CAS  Google Scholar 

  18. Chen, Y. et al. Antifouling asymmetric block copolymer nanofilms via freestanding interfacial polymerization for efficient and sustainable water purification. Angew. Chem. Int. Ed. 63, e202408345 (2024).

    Article  CAS  Google Scholar 

  19. Liu, Y., Ban, Y. & Yang, W. Microstructural engineering and architectural design of metal–organic framework membranes. Adv. Mater. 29, 1606949 (2017).

    Article  Google Scholar 

  20. Xu, Y. et al. Plant polyphenol intermediated metal-organic framework (MOF) membranes for efficient desalination. J. Membr. Sci. 618, 118726 (2021).

    Article  CAS  Google Scholar 

  21. Meng, W., Xue, Q., Zhu, J. & Zhang, K. Exploiting sulfonated covalent organic frameworks to fabricate long-lasting stability and chlorine-resistant thin-film nanocomposite nanofiltration membrane. npj Clean Water 7, 23 (2024).

    Article  CAS  Google Scholar 

  22. Wang, M. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).

    Article  Google Scholar 

  23. Jiang, Z. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ulu, A., Birhanli, E. & Ates, B. Tunable and tough porous chitosan/beta-cyclodextrin/tannic acid biocomposite membrane with mechanic, antioxidant, and antimicrobial properties. Int. J. Biol. Macromol. 188, 696–707 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2019).

    Article  PubMed  Google Scholar 

  26. Jimenez-Solomon, M. F., Song, Q., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, Z., Karan, S. & Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 30, e1705973 (2018).

    Article  PubMed  Google Scholar 

  28. Cheng, X., Liu, Y., Guo, Z. & Shao, L. Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J. Membr. Sci. 493, 156–166 (2015).

    Article  CAS  Google Scholar 

  29. Wang, M., Jiang, J., Liang, S., Sui, C. & Wu, S. Functional semi-interpenetrating polymer networks. Macromol. Rapid Commun. 45, 2400539 (2024).

    Article  CAS  Google Scholar 

  30. Silverstein, M. S. Interpenetrating polymer networks: so happy together?. Polymer 207, 122929 (2020).

    Article  CAS  Google Scholar 

  31. Wang, M., Nie, C., Liu, J. & Wu, S. Organic‒inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat. Commun. 14, 1000 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cong, S., Wang, J. & Wang, Z. & Liu, X. Polybenzimidazole (PBI) and benzimidazole-linked polymer (BILP) membranes. Green Chem. Eng. 2, 44–56 (2021).

    Article  Google Scholar 

  33. Yang, Z. et al. Robust liquid crystal semi-interpenetrating polymer network with superior energy-dissipation performance. Nat. Commun. 15, 9902 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, F.-F., Su, T., Zhao, X.-T., Pan, J.-F. & Liu, L.-F. A rigid-flexible interpenetrating polyamide reverse osmosis membrane with improved antifouling property fabricated via two step modifications. J. Membr. Sci. 637, 119625 (2021).

    Article  CAS  Google Scholar 

  35. Zhang, Z. et al. Fluorocarbon-based self-layering interpenetrating polymer-network coatings with anti-fouling and anti-icing properties. Chem. Eng. J. 474, 145540 (2023).

    Article  CAS  Google Scholar 

  36. Cavalcante, J. et al. Biobased interpenetrating polymer network membranes for sustainable molecular sieving. ACS Nano 18, 7433–7443 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, L. et al. A novel long-lasting antifouling membrane modified with bifunctional capsaicin-mimic moieties via in situ polymerization for efficient water purification. J. Mater. Chem. A 4, 10352–10362 (2016).

    Article  CAS  Google Scholar 

  38. Dai, Z. et al. Living fabrication of functional semi-interpenetrating polymeric materials. Nat. Commun. 12, 3422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geise, G. M. Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Van Wagner, E. M., Sagle, A. C., Sharma, M. M., La, Y.-H. & Freeman, B. D. Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J. Membr. Sci. 367, 273–287 (2011).

    Article  Google Scholar 

  41. Qin, Y. et al. Impact of end groups of small molecules grafted to reverse osmosis membranes on their separation and antifouling performance. Desalination 586, 117864 (2024).

    Article  CAS  Google Scholar 

  42. Chen, L. et al. Rapid, accurate, and simultaneous measurement of water and oil contents in the fried starchy system using low-field NMR. Food Chem. 233, 525–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Baudequin, C. et al. Purification of firefighting water containing a fluorinated surfactant by reverse osmosis coupled to electrocoagulation–filtration. Sep. Purif. Technol. 76, 275–282 (2011).

    Article  CAS  Google Scholar 

  44. Liu, J. et al. Additive-optimized micro-structure in cellulose acetate butyrate-based reverse osmosis membrane for desalination. Chemosphere 327, 138512 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Choi, W. et al. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization. J. Membr. Sci. 527, 121–128 (2017).

    Article  CAS  Google Scholar 

  46. Chae, H.-R., Lee, J., Lee, C.-H., Kim, I.-C. & Park, P.-K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 483, 128–135 (2015).

    Article  CAS  Google Scholar 

  47. Park, S.-J. et al. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating. J. Mater. Chem. A 5, 6648–6655 (2017).

    Article  CAS  Google Scholar 

  48. Park, S.-J. et al. Aromatic solvent-assisted interfacial polymerization to prepare high performance thin film composite reverse osmosis membranes based on hydrophilic supports. Polymer 144, 159–167 (2018).

    Article  CAS  Google Scholar 

  49. Morgante, C., Lopez, J., Cortina, J. L. & Tamburini, A. New generation of commercial nanofiltration membranes for seawater/brine mining: experimental evaluation and modelling of membrane selectivity for major and trace elements. Sep. Purif. Technol. 340, 126758 (2024).

    Article  CAS  Google Scholar 

  50. Babu, J. & Murthy, Z. V. P. Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Sep. Purif. Technol. 183, 66–72 (2017).

    Article  CAS  Google Scholar 

  51. Safarpour, M., Vatanpour, V., Khataee, A. & Esmaeili, M. Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep. Purif. Technol. 154, 96–107 (2015).

    Article  CAS  Google Scholar 

  52. Yang, S. & Zhang, K. Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance. J. Membr. Sci. 595, 117526 (2020).

    Article  CAS  Google Scholar 

  53. Tajuddin, M. H. et al. Incorporation of layered double hydroxide nanofillers in polyamide nanofiltration membrane for high performance of salts rejections. J. Taiwan Inst. Chem. Eng. 97, 1–11 (2019).

    Article  CAS  Google Scholar 

  54. Rahimi, M., Dadari, S., Zeinaddini, S. & Mohamadian, E. Flux, antifouling and separation characteristics enhancement of nanocomposite polyethersulfone mixed-matrix membrane by embedding synthesized hydrophilic adipate ferroxane nanoparticles. Korean J. Chem. Eng. 34, 1444–1455 (2017).

    Article  CAS  Google Scholar 

  55. Deng, L. et al. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. J. Membr. Sci. 619, 118564 (2021).

    Article  CAS  Google Scholar 

  56. Hu, J., Li, M., Wang, L. & Zhang, X. Polymer brush-modified graphene oxide membrane with excellent structural stability for effective fractionation of textile wastewater. J. Membr. Sci. 618, 118698 (2021).

    Article  CAS  Google Scholar 

  57. Al-Amoudi, A. S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination 259, 1–10 (2010).

    Article  CAS  Google Scholar 

  58. Yao, Y. et al. More resilient polyester membranes for high-performance reverse osmosis desalination. Science 384, 333–338 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  60. Gowda, B. & Weiss, A. The bond N-Cl. A spectroscopic (35Cl-NQR, IR) investigation. Z. Naturforsch. 49a, 695–702 (1994).

    Article  Google Scholar 

  61. Zhang, Y. et al. Dual integration of amine-functionalized carbon dots endowed nanofiltration membranes with highly efficient biofouling/acid/chlorine resistance for effective Mg2+/Li+ separation. J. Membr. Sci. 696, 122542 (2024).

    Article  CAS  Google Scholar 

  62. Liu, C. et al. High-hydrophilic and antifouling reverse osmosis membrane prepared based an unconventional radiation method for pharmaceutical plant effluent treatment. Sep. Purif. Technol. 280, 119838 (2022).

    Article  CAS  Google Scholar 

  63. Peng, H. et al. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes. Nat. Commun. 14, 5483 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y., Lian, T., Tarakina, N. V., Yuan, J. & Antonietti, M. Lamellar carbon nitride membrane for enhanced ion sieving and water desalination. Nat. Commun. 13, 7339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, P. et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 10, 149–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Ye, C. et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 13, 3184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, D. et al. Solution-processable polymer membranes with hydrophilic subnanometre pores for sustainable lithium extraction. Nat. Water 3, 319–333 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22375124, 22175114 and 22378374), the Natural Science Foundation of Shanghai (22ZR1429400), the National Science Fund for Excellent Young Scholars (Overseas) (23Z990202541), the High-Level Overseas Talents Introduction Program of Shanghai, the Research Startup Foundation of Shanghai Jiao Tong University and the ‘Green Valley Elite-Innovation Leading Action’ Program of Zhejiang.

Author information

Authors and Affiliations

Contributions

R.D. conceived and supervised this work. R.D., J.X. and Y.C. designed the experiment. Y.C. synthesized the monomers and membranes. Y.C. performed the membrane filtration experiments and membrane characterizations. Y.C., Z.L., B.C., Q.H., L.Y. and Y.S. carried out the antibacterial test and anti-chlorine test. K.S. performed the MD simulations. R.D., J.X. and Y.C. performed the date analyses. R.D. and Y.C. wrote the manuscript. R.D. revised the whole manuscript. All the authors contributed to the discussion and revision of the content and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Ruijiao Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary synthesis, methods, Figs. 1–55 and refs. 1–12.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data for the structural design and in situ creation of hierarchically structured polymer nanofilms.

Source Data Fig. 2

Statistical source data for microstructures and hydration of semi-IPN polymer nanofilms.

Source Data Fig. 3

Statistical source data for ion sieving and fouling resistance of semi-IPN polymer nanofilms.

Source Data Fig. 4

Statistical source data for mechanism and multiscale chlorine resistance of semi-IPN polymer nanofilms.

Source Data Fig. 5

Statistical source data for high-efficiency and sustainable seawater desalination using semi-IPN polymer nanofilms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Xu, J., Song, K. et al. Hierarchically semi-interpenetrating polymer nanofilms for high-performance seawater desalination. Nat Water (2026). https://doi.org/10.1038/s44221-025-00577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44221-025-00577-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing