Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wearable ultrasound technology

Abstract

Wearable ultrasound technology refers to ultrasound devices designed with compact form factors that do not restrict the mobility or routine functions of the wearer. These devices are intended to provide continuous monitoring of internal tissue structures and offer therapeutic intervention without manual operation. Wearable ultrasound technology has potential applications in the management of chronic diseases, acute conditions during surgeries and emergencies, and post-operative care. This technology can provide clinicians and patients with data and insights, such as patterns of physiological variations over time and critical periods of disease progression, that are hardly attainable using conventional handheld ultrasound devices. In this Review, we discuss recent advances in wearable ultrasound technology, focusing on material selection, mechanical design, the integration of wearable systems, and exemplary medical applications. Additionally, we provide a framework for expanding the adoption of wearable ultrasound technology, particularly in low-resource settings, by exploring barriers in technology transfer. Finally, we identify critical challenges from scientific, engineering and clinical perspectives to advance wearable ultrasound technology to the next stages of development.

Key points

  • Wearable ultrasound technology enables hands-free, operator-independent and continuous operation.

  • The integration of miniaturized back-end circuits, autonomous signal processing algorithms and multimodal sensing systems is intended to enhance diagnosis accuracy, user experience and patient outcomes.

  • Wearable ultrasound technology has shown potential in a wide range of use cases, although most of the results are yet to be validated against gold standards in well-controlled clinical studies.

  • To enable clinical translation, it is necessary to carry out controlled clinical studies, establish safety protocols for therapeutic intervention, and integrate wearable data with electronic health records.

  • Future advancements should focus on improving imaging resolution, realizing efficient 3D imaging, integrating control electronics with low size, weight and power consumption, creating breathable device packaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transducer material design, acoustic stack and configurations for wearable ultrasound devices.
Fig. 2: Rigid, flexible and stretchable wearable ultrasound designs.
Fig. 3: Device integration.
Fig. 4: Applications of wearable ultrasound technology.

Similar content being viewed by others

References

  1. Miller, D. L. et al. Overview of therapeutic ultrasound applications and safety considerations. J. Med. Ultrasound 31, 623–634 (2012).

    Article  Google Scholar 

  2. Li, K., Xu, Y. & Meng, M. Q.-H. An overview of systems and techniques for autonomous robotic ultrasound acquisitions. IEEE Trans. Med. Robot. Bionics 3, 510–524 (2021).

    Article  Google Scholar 

  3. Steinhubl, S. R., Muse, E. D. & Topol, E. J. The emerging field of mobile health. Sci. Transl. Med. 7, 283rv283 (2015).

    Article  Google Scholar 

  4. Majumder, S., Mondal, T. & Deen, M. J. Wearable sensors for remote health monitoring. Sensors 17, 130 (2017).

  5. Li, Z., Tian, X., Qiu, C.-W. & Ho, J. S. Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4, 382–391 (2021).

    Article  Google Scholar 

  6. Jiang, L. et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat. Commun. 13, 3853 (2022).

    Article  Google Scholar 

  7. Fu, B., Pu, C., Guo, L., Xu, H. & Peng, C. A wearable ultrasound transducer array for neuromodulation applications in the treatment of diabetic foot disease. In 2023 IEEE International Ultrasonics Symposium (IUS) 1–4 (IEEE, 2023).

  8. Moon, S. et al. A Flexible Ultrasound transducer with tunable focusing for non-invasive brain stimulation. In 2023 IEEE International Ultrasonics Symposium (IUS) 1–4 (IEEE, 2023).

  9. Sonmezoglu, S., Shen, K., Carmena, J. M. & Maharbiz, M. M. in Handbook of Neuroengineering (ed. Thakor, N. V.) 623–650 (Springer, 2023).

  10. Yu, C. C. et al. A conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. Adv. Mater. 35, e2300066 (2023).

    Article  Google Scholar 

  11. Li, S. et al. Stretchable electronic facial masks for sonophoresis. ACS Nano 16, 5961–5974 (2022).

    Article  Google Scholar 

  12. Ngo, O. et al. Development of low frequency (20–100 kHz) clinically viable ultrasound applicator for chronic wound treatment. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 572–580 (2019).

    Article  Google Scholar 

  13. Best, T. M., Moore, B., Jarit, P., Moorman, C. T. & Lewis, G. K. Sustained acoustic medicine: wearable, long duration ultrasonic therapy for the treatment of tendinopathy. Phys. Sportsmed. 43, 366–374 (2015).

    Article  Google Scholar 

  14. Song, Y., Min, J. & Gao, W. Wearable and implantable electronics: moving toward precision therapy. ACS Nano 13, 12280–12286 (2019).

    Article  Google Scholar 

  15. Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article  Google Scholar 

  16. Bollella, P., Sharma, S., Cass, A. E. G. & Antiochia, R. Minimally‐invasive microneedle‐based biosensor array for simultaneous lactate and glucose monitoring in artificial interstitial fluid. Electroanalysis 31, 374–382 (2019).

    Article  Google Scholar 

  17. Krieger, K. J. et al. Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv. Mater. Technol. 5, 2000518 (2020).

    Article  Google Scholar 

  18. Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  Google Scholar 

  19. Huang, H., Wu, R. S., Lin, M. & Xu, S. Emerging wearable ultrasound technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71, 713–729 (2023).

    Article  Google Scholar 

  20. Zhang, L., Du, W., Kim, J. H., Yu, C. C. & Dagdeviren, C. An emerging era: conformable ultrasound electronics. Adv. Mater. 36, e2307664 (2023).

    Article  Google Scholar 

  21. Li, Y. et al. Progress in wearable acoustical sensors for diagnostic applications. Biosens. Bioelectron. 237, 115509 (2023).

    Article  Google Scholar 

  22. Wang, C. & Zhao, X. See how your body works in real time — wearable ultrasound is on its way. Nature 630, 817–819 (2024).

    Article  Google Scholar 

  23. Du, W. et al. Conformable ultrasound breast patch for deep tissue scanning and imaging. Sci. Adv. 9, eadh5325 (2023).

    Article  Google Scholar 

  24. Zhang, L. et al. A conformable phased-array ultrasound patch for bladder volume monitoring. Nat. Electron. 7, 77–90 (2023).

    Article  Google Scholar 

  25. van Neer, P. et al. Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures. Nat. Commun. 15, 2802 (2024).

    Article  Google Scholar 

  26. Keller, K., Leitner, C., Baumgartner, C., Benini, L. & Greco, F. Fully printed flexible ultrasound transducer for medical applications. Adv. Mater. Technol. 8, 2300577 (2023).

    Article  Google Scholar 

  27. Fukada, E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277–1290 (2000).

    Article  Google Scholar 

  28. Pang, D. C. & Chang, C. M. Development of a novel transparent flexible capacitive micromachined ultrasonic transducer. Sensors 17, 1443 (2017).

    Article  Google Scholar 

  29. Dang, Z.-M. Dielectric Polymer Materials for High-Density Energy Storage (William Andrew, 2018).

  30. Kim, M., Kim, J. & Cao, W. Aspect ratio dependence of electromechanical coupling coefficient of piezoelectric resonators. Appl. Phys. Lett. 87, 132901 (2005).

    Article  Google Scholar 

  31. Mattoon, J. S., Sellon, R. K. & Berry, C. R. Small Animal Diagnostic Ultrasound E-Book (Elsevier Health Sciences, 2020).

  32. Chan, V. & Perlas, A. in Atlas of Ultrasound-Guided Procedures in Interventional Pain Management (ed. Narouze, S. N.) 13–19 (2011).

  33. Rathod, V. T. A review of acoustic impedance matching techniques for piezoelectric sensors and transducers. Sensors 20, 4051 (2020).

    Article  Google Scholar 

  34. Wu, D.-W. et al. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2304–2310 (2009).

    Article  Google Scholar 

  35. Kim, T., Kim, J. & Jiang, X. Transit time difference flowmeter for intravenous flow rate measurement using 1–3 piezoelectric composite transducers. IEEE Sens. J. 17, 5741–5748 (2017).

    Article  Google Scholar 

  36. Pashaei, V. et al. Flexible body-conformal ultrasound patches for image-guided neuromodulation. IEEE Trans. Biomed. Circuits Syst. 14, 305–318 (2020).

    Article  Google Scholar 

  37. Zhu, K. et al. Increasing performances of 1–3 piezocomposite ultrasonic transducer by alternating current poling method. Micromachines 13, 1715 (2022).

    Article  Google Scholar 

  38. Chen, Y. et al. High-frequency PIN–PMN–PT single crystal ultrasonic transducer for imaging applications. Appl. Phys. A 108, 987–991 (2012).

    Article  Google Scholar 

  39. Zhang, S. et al. Recent developments on high Curie temperature PIN–PMN–PT ferroelectric crystals. J. Cryst. Growth 318, 846–850 (2011).

    Article  Google Scholar 

  40. Tittmann, B. R., Parks, D. A. & Zhang, S. O. High temperature piezoelectrics — a comparison. In Proc. 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) 20–24 (2013).

  41. Jaffe, H. Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494–498 (1958).

    Article  Google Scholar 

  42. Lin, Y. et al. Studies on the electrostatic effects of stretched PVDF films and nanofibers. Nanoscale Res. Lett. 16, 79 (2021).

    Article  Google Scholar 

  43. Persano, L. et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013).

    Article  Google Scholar 

  44. Liu, Y. et al. Fabrication and optical properties of transparent P (VDF-TrFE) ultrathin films. Nanomaterials 12, 588 (2022).

    Article  Google Scholar 

  45. Dallaev, R. et al. Brief review of PVDF properties and applications potential. Polymers 14, 4793 (2022).

    Article  Google Scholar 

  46. Mao, D., Gnade, B. E. & Quevedo-Lopez, M. A. in Ferroelectrics: Physical Effects (ed. Lallart, M.) 23 (InTech, 2011).

  47. Uchino, K. Advanced Piezoelectric Materials: Science and Technology (Woodhead, 2017).

  48. Foster, F. S., Harasiewicz, K. A. & Sherar, M. D. A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1363–1371 (2000).

    Article  Google Scholar 

  49. Carey, S. et al. PVdF array characterisation for high frequency ultrasonic imaging. In IEEE Ultrasonics Symposium 2024 1930–1933 (IEEE, 2004).

  50. Habib, A., Wagle, S., Decharat, A. & Melandsø, F. Evaluation of adhesive-free focused high-frequency PVDF copolymer transducers fabricated on spherical cavities. SMS 29, 045026 (2020).

    Google Scholar 

  51. Kim, H. S. et al. Dominant role of Young’s modulus for electric power generation in PVDF–BaTiO3 composite-based piezoelectric nanogenerator. Nanomaterials 8, 777 (2018).

    Article  Google Scholar 

  52. Akasheh, F., Myers, T., Fraser, J. D., Bose, S. & Bandyopadhyay, A. Development of piezoelectric micromachined ultrasonic transducers. Sens. Actuat. A 111, 275–287 (2004).

    Article  Google Scholar 

  53. Wang, T., Kobayashi, T. & Lee, C. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air. Micro Nano Lett. 11, 558–562 (2016).

    Article  Google Scholar 

  54. Ledesma, E., Zamora, I., Uranga, A., Torres, F. & Barniol, N. Enhancing AlN PMUTs’ acoustic responsivity within a MEMS-on-CMOS process. Sensors 21, 8447 (2021).

    Article  Google Scholar 

  55. Birjis, Y. et al. Piezoelectric micromachined ultrasonic transducers (PMUTs): performance metrics, advancements, and applications. Sensors 22, 9151 (2022).

    Article  Google Scholar 

  56. Liu, W., Zhu, C. & Wu, D. Flexible piezoelectric micro ultrasonic transducer array integrated on various flexible substrates. Sens. Actuat. A 317, X–y (2021).

    Article  Google Scholar 

  57. Qiu, Y. et al. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors 15, 8020–8041 (2015).

    Article  Google Scholar 

  58. Li, J., Ren, W., Fan, G. & Wang, C. Design and fabrication of piezoelectric micromachined ultrasound transducer (pMUT) with partially-etched ZnO film. Sensors 17, 1381 (2017).

    Article  Google Scholar 

  59. Huang, Y. et al. Collapsed regime operation of capacitive micromachined ultrasonic transducers based on wafer-bonding technique. In IEEE Symposium on Ultrasonics 2003 1161–1164 (IEEE, 2003).

  60. Lee, B. C., Nikoozadeh, A., Park, K. K. & Khuri-Yakub, B. T. High-efficiency output pressure performance using capacitive micromachined ultrasonic transducers with substrate-embedded springs. Sensors 18, 2520 (2018).

    Article  Google Scholar 

  61. Caliano, G., Matrone, G. & Savoia, A. S. Biasing of capacitive micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 402–413 (2016).

    Article  Google Scholar 

  62. Qin, Y., Sun, W. & Yeow, J. T. A robust control approach for MEMS capacitive micromachined ultrasonic transducer. Trans. Inst. Meas. Control. 41, 107–116 (2019).

    Article  Google Scholar 

  63. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  Google Scholar 

  64. Shung, K. K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC Press, 2005).

  65. Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out (Academic, 2004).

  66. Lee, W. & Roh, Y. Ultrasonic transducers for medical diagnostic imaging. Biomed. Eng. Lett. 7, 91–97 (2017).

    Article  Google Scholar 

  67. Bhuyan, A. et al. Miniaturized, wearable, ultrasound probe for on-demand ultrasound screening. In 2011 IEEE International Ultrasonics Symposium 1060–1063 (IEEE, 2011).

  68. Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).

    Article  Google Scholar 

  69. Kenny, J. S. et al. A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci. Rep. 11, 7780 (2021).

    Article  Google Scholar 

  70. Ritter, T. A., Shrout, T. R., Tutwiler, R. & Shung, K. K. A 30-MHz piezo-composite ultrasound array for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 217–230 (2002).

    Article  Google Scholar 

  71. Zhou, Q., Lam, K. H., Zheng, H., Qiu, W. & Shung, K. K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014).

    Article  Google Scholar 

  72. Zhou, S. et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 629, 810–818 (2024).

    Article  Google Scholar 

  73. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  Google Scholar 

  74. Elloian, J. et al. Flexible ultrasound transceiver array for non-invasive surface-conformable imaging enabled by geometric phase correction. Sci. Rep. 12, 16184 (2022).

    Article  Google Scholar 

  75. Hu, H. et al. Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue. Nat. Biomed. Eng. 7, 1321–1334 (2023).

    Article  Google Scholar 

  76. Bélanger, M. C. & Marois, Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low‐density polyethylene and polydimethylsiloxane: a review. J. Biomed. Mater. Res. 58, 467–477 (2001).

    Article  Google Scholar 

  77. Ota, H. et al. R2R-based continuous production of patterned and multilayered elastic substrates with liquid metal wiring for stretchable electronics. Adv. Mater. Technol. 9, 1–14 (2024).

    Google Scholar 

  78. Chen, C. & Pertijs, M. A. Integrated transceivers for emerging medical ultrasound imaging devices: a review. Open J. Solid State Circuits Soc. 1, 104–114 (2021).

    Google Scholar 

  79. Zhang, Y. & Demosthenous, A. Integrated circuits for medical ultrasound applications: imaging and beyond. TBioCAS 15, 838–858 (2021).

    Google Scholar 

  80. Hettiarachchi, N., Ju, Z. & Liu, H. A new wearable ultrasound muscle activity sensing system for dexterous prosthetic control. In 2015 IEEE International Conference on Systems, Man, and Cybernetics 1415–1420 (IEEE, 2015).

  81. Yang, X., Chen, Z., Hettiarachchi, N., Yan, J. & Liu, H. A wearable ultrasound system for sensing muscular morphological deformations. IEEE Trans. Syst. Man. Cybern. 51, 3370–3379 (2021).

    Article  Google Scholar 

  82. Zhang, Y. et al. A four-channel analog front-end ASIC for wearable A-mode ultrasound hand kinematic tracking applications. In 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2023).

  83. Ye, X., Jiang, X., Wang, S. & Chen, J. A low-intensity pulsed ultrasound interface ASIC for wearable medical therapeutic device applications. Electronics 13, 1154 (2024).

    Article  Google Scholar 

  84. Seok, C., Yamaner, F. Y., Sahin, M. & Oralkan, Ö. A wearable ultrasonic neurostimulator — Part I: A 1D CMUT phased array system for chronic implantation in small animals. IEEE Trans. Biomed. Circuits Syst. 15, 692–704 (2021).

    Article  Google Scholar 

  85. Seok, C., Adelegan, O. J., Biliroğlu, A. Ö., Yamaner, F. Y. & Oralkan, Ö. A wearable ultrasonic neurostimulator — Part II: A 2D CMUT phased array system with a flip-chip bonded ASIC. IEEE Trans. Biomed. Circuits Syst. 15, 705–718 (2021).

    Article  Google Scholar 

  86. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  Google Scholar 

  87. Song, I. et al. Design and implementation of a new wireless carotid neckband Doppler system with wearable ultrasound sensors: preliminary results. Appl. Sci. 9, 2202 (2019).

    Article  Google Scholar 

  88. Hoskins, P. R., Martin, K. & Thrush, A. Diagnostic Ultrasound: Physics and Equipment (CRC, 2019).

  89. Kwinten, W. M. J., van Leuteren, P. G., van Duren-van Iersel, M., Dik, P. & Jira, P. E. SENS-U: continuous home monitoring of natural nocturnal bladder filling in children with nocturnal enuresis — a feasibility study. J. Pediatr. Urol. 16, 196 e191–196 e196 (2020).

    Article  Google Scholar 

  90. Niu, H. et al. Design of an ultrasound bladder volume measurement and alarm system. In 5th International Conference on Bioinformatics and Biomedical Engineering 1–4 (IEEE, 2011).

  91. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  Google Scholar 

  92. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article  Google Scholar 

  93. Zhou, S. et al. Clinical validation of a wearable ultrasound sensor of blood pressure. Nat. Biomed. Eng. 9, 865–881 (2024).

    Article  Google Scholar 

  94. Shahshahani, A., Laverdiere, C., Bhadra, S. & Zilic, Z. Ultrasound sensors for diaphragm motion tracking: an application in non-invasive respiratory monitoring. Sensors 18, 2617 (2018).

    Article  Google Scholar 

  95. Yang, X., Sun, X., Zhou, D., Li, Y. & Liu, H. Towards wearable A-mode ultrasound sensing for real-time finger motion recognition. IEEE Trans. Neural. Syst. Rehabil. Eng. 26, 1199–1208 (2018).

    Article  Google Scholar 

  96. Molyneux, P., Ellis, R. F. & Carroll, M. Reliability of a two-probe ultrasound imaging procedure to measure strain in the Achilles tendon. J. Foot Ankle Res. 12, 49 (2019).

    Article  Google Scholar 

  97. AlMohimeed, I., Turkistani, H. & Ono, Y. Development of wearable and flexible ultrasonic sensor for skeletal muscle monitoring. In 2013 IEEE International Ultrasonics Symposium (IUS) 1137–1140 (IEEE, 2013).

  98. Gao, X. et al. A wearable echomyography system based on a single transducer. Nat. Electron. 7, 1035–1046 (2024).

    Article  Google Scholar 

  99. Ding, X. et al. A high-sensitivity bowel sound electronic monitor based on piezoelectric micromachined ultrasonic transducers. Micromachines 13, 2221 (2022).

    Article  Google Scholar 

  100. Thijssen, J., Van Wijk, M. & Cuypers, M. Performance testing of medical echo/Doppler equipment. Eur. J. Ultrasound 15, 151–164 (2002).

    Article  Google Scholar 

  101. Demi, L. Practical guide to ultrasound beam forming: beam pattern and image reconstruction analysis. Appl. Sci. 8, 1544 (2018).

    Article  Google Scholar 

  102. Gennisson, J.-L., Deffieux, T., Fink, M. & Tanter, M. Ultrasound elastography: principles and techniques. Diagn. Interv. Imaging 94, 487–495 (2013).

    Article  Google Scholar 

  103. Liu, H.-C. et al. Wearable bioadhesive ultrasound shear wave elastography. Sci. Adv. 10, eadk8426 (2024).

    Article  Google Scholar 

  104. Wang, F. et al. Flexible Doppler ultrasound device for the monitoring of blood flow velocity. Sci. Adv. 7, eabi9283 (2021).

    Article  Google Scholar 

  105. Chang, L.-W., Hsu, K.-H. & Li, P.-C. Graphics processing unit-based high-frame-rate color Doppler ultrasound processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1856–1860 (2009).

    Article  Google Scholar 

  106. Evans, D. H., Jensen, J. A. & Nielsen, M. B. Ultrasonic colour Doppler imaging. Interface Focus 1, 490–502 (2011).

    Article  Google Scholar 

  107. Wang, C. et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5, 749–758 (2021).

    Article  Google Scholar 

  108. Rubin, J. M., Bude, R. O., Carson, P. L., Bree, R. L. & Adler, R. S. Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology 190, 853–856 (1994).

    Article  Google Scholar 

  109. Bercoff, J. et al. Ultrafast compound Doppler imaging: providing full blood flow characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 134–147 (2011).

    Article  Google Scholar 

  110. Blans, M. J., Bosch, F. H. & van der Hoeven, J. G. The use of an external ultrasound fixator (Probefix) on intensive care patients: a feasibility study. Ultrasound J. 11, 26 (2019).

    Article  Google Scholar 

  111. Shomaji, S., Basak, A., Mandai, S., Karam, R. & Bhunia, S. A wearable carotid ultrasound assembly for early detection of cardiovascular diseases. In 2016 IEEE Healthcare Innovation Point-of-Care Technologies Conference (HI-POCT) 17–20 (IEEE, 2016).

  112. Shomaji, S. et al. Early detection of cardiovascular diseases using wearable ultrasound device. IEEE Consum. Electron. Mag. 8, 12–21 (2019).

    Article  Google Scholar 

  113. Kenny, J. S., Munding, C. E., Eibl, A. M. & Eibl, J. K. Wearable ultrasound and provocative hemodynamics: a view of the future. Crit. Care 26, 329 (2022).

    Article  Google Scholar 

  114. Weber, S. et al. Continuous wrist blood pressure measurement with ultrasound. Biomed. Tech. (Berl.) https://doi.org/10.1515/bmt-2013-4124 (2013).

  115. Peng, C., Chen, M., Sim, H. K., Zhu, Y. & Jiang, X. Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor. IEEE Sens. J. 21, 2642–2650 (2021).

    Article  Google Scholar 

  116. Steinberg, S., Huang, A., Ono, Y. & Rajan, S. Continuous artery monitoring using a flexible and wearable single-element ultrasonic sensor. IEEE Instrum. Meas. Mag. 25, 6–11 (2022).

    Article  Google Scholar 

  117. Xu, L. et al. Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound. Measurement 220, 113379 (2023).

    Article  Google Scholar 

  118. Goncalves Seabra, A. C., Silva, A. F. D., Stieglitz, T. & Amado-Rey, A. B. In silico blood pressure models comparison. IEEE Sens. J. 22, 23486–23493 (2022).

    Article  Google Scholar 

  119. Kenny, J. S. et al. A wireless wearable Doppler ultrasound detects changing stroke volume: proof-of-principle comparison with trans-esophageal echocardiography during coronary bypass surgery. Bioengineering 8, 203 (2021).

    Article  Google Scholar 

  120. Frey, S., Vostrikov, S., Benini, L. & Cossettini, A. WULPUS: a Wearable Ultra Low-Power Ultrasound probe for multi-day monitoring of carotid artery and muscle activity. In 2022 IEEE International Ultrasonics Symposium (IUS) 1–4 (IEEE, 2022).

  121. Khan, D. Z. et al. Robotic semi-automated transcranial Doppler assessment of cerebrovascular autoregulation in post-concussion syndrome: methodological considerations. Neurotrauma Rep. 1, 218–231 (2020).

    Article  Google Scholar 

  122. Krings, E. J. et al. Design of a wearable ultrasound patch with soft and conformal matching layer. Front. Med. Eng. 86731, V001T004A011 (2023).

    Google Scholar 

  123. Li, L., Long, F. L. J., Lim, I., Sun, T. & Ren, H. An overhead collapsible origami-based mount for medical applications. Robotics 12, 21 (2023).

    Article  Google Scholar 

  124. Purkayastha, S. & Sorond, F. Transcranial Doppler ultrasound: technique and application. Semin. Neurol. 32, 411–420 (2012).

    Article  Google Scholar 

  125. Newell, D. W., Aaslid, R., Stooss, R. & Reulen, H. J. The relationship of blood flow velocity fluctuations to intracranial pressure B waves. J. Neurosurg. 76, 415–421 (1992).

    Article  Google Scholar 

  126. Heres, H. M. et al. Image acquisition stability of fixated musculoskeletal sonography in an exercise setting: a quantitative analysis and comparison with freehand acquisition. J. Med. Ultrason. 47, 47–56 (2020).

    Article  Google Scholar 

  127. Qu, M. et al. Continuously monitoring of muscle fatigue based on a wearable micromachined ultrasonic transducer probe. Sens. Actuat. A 365, 114892 (2024).

    Article  Google Scholar 

  128. Brandenburg, J. E. et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch. Phys. M. 95, 2207–2219 (2014).

    Article  Google Scholar 

  129. Majdi, J. A., Acuña, S. A., Chitnis, P. V. & Sikdar, S. Toward a wearable monitor of local muscle fatigue during electrical muscle stimulation using tissue Doppler imaging. Wearable Technol. 3, e16 (2022).

    Article  Google Scholar 

  130. Protopappas, V. C. et al. An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones. IEEE Trans. Biomed. Eng. 52, 1597–1608 (2005).

    Article  Google Scholar 

  131. Sun, S. et al. MEMS ultrasonic transducers for safe, low-power and portable eye-blinking monitoring. Microsyst. Nanoeng. 8, 63 (2022).

    Article  Google Scholar 

  132. Mendez, J. et al. Continuous A-mode ultrasound-based prediction of transfemoral amputee prosthesis kinematics across different ambulation tasks. IEEE Trans. Biomed. Eng. 71, 56–67 (2024).

    Article  Google Scholar 

  133. Nazari, V. & Zheng, Y. P. Controlling upper limb prostheses using sonomyography (SMG): a review. Sensors 23, 1885 (2023).

    Article  Google Scholar 

  134. Iravantchi, Y., Goel, M. & Harrison, C. BeamBand: Hand gesture sensing with ultrasonic beamforming. In Proc. 2019 CHI Conference on Human Factors in Computing Systems 1–10 (ACM, 2019).

  135. Shi, J., Chang, Q. & Zheng, Y.-P. Feasibility of controlling prosthetic hand using sonomyography signal in real time: preliminary study. JRRD 47, 87–98 (2010).

    Article  Google Scholar 

  136. Sgambato, B. G. et al. High performance wearable ultrasound as a human-machine interface for wrist and hand kinematic tracking. IEEE Trans. Biomed. Eng. 71, 484–493 (2024).

    Article  Google Scholar 

  137. Godih, A. et al. Design and creation of a wearable circular ultrasonic device for a soft screening and diagnosis of breast abnormalities. J. Cancer Sci. Clin. Ther. 3, 251–265 (2019).

    Article  Google Scholar 

  138. van Leuteren, P. G., Klijn, A. J., de Jong, T. P. & Dik, P. SENS-U: validation of a wearable ultrasonic bladder monitor in children during urodynamic studies. J. Pediatr. Urol. 14, 569.e561–569.e566 (2018).

    Google Scholar 

  139. Pu, C., Fu, B., Guo, L., Xu, H. & Peng, C. A stretchable and wearable ultrasonic transducer array for bladder volume monitoring application. IEEE Sens. J. 24, 15875–15883 (2024).

    Article  Google Scholar 

  140. Weng, C. K., Chen, J. W., Lee, P. Y. & Huang, C. C. Implementation of a wearable ultrasound device for the overnight monitoring of tongue base deformation during obstructive sleep apnea events. Ultrasound Med. Biol. 43, 1639–1650 (2017).

    Article  Google Scholar 

  141. Chen, A. et al. Machine-learning enabled wireless wearable sensors to study individuality of respiratory behaviors. Biosens. Bioelectron. 173, 112799 (2021).

    Article  Google Scholar 

  142. Marugan-Rubio, D. et al. Concurrent validity and reliability of manual versus specific device transcostal measurements for breathing diaphragm thickness by ultrasonography in lumbopelvic pain athletes. Sensors 21, 4329 (2021).

    Article  Google Scholar 

  143. Roham, M. et al. A mobile wearable wireless fetal heart monitoring system. In 2011 5th International Symposium on Medical Information and Communication Technology 135–138 (IEEE, 2011).

  144. Nguyen, K. et al. Wearable fetal monitoring solution for improved mobility during labor & delivery. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 4397–4400 (IEEE, 2018).

  145. Ryu, D. et al. Comprehensive pregnancy monitoring with a network of wireless, soft, and flexible sensors in high- and low-resource health settings. Proc. Natl Acad. Sci. USA 118, e2100466118 (2021).

    Article  Google Scholar 

  146. Donovan, C. M. & Brooks, G. A. Endurance training affects lactate clearance, not lactate production. Am. J. Physiol. Endocrinol. Med. 244, E83–E92 (1983).

    Article  Google Scholar 

  147. Cornelissen, V. A. & Smart, N. A. Exercise training for blood pressure: a systematic review and meta‐analysis. J. Am. Heart Assoc. 2, e004473 (2013).

    Article  Google Scholar 

  148. Guo, J.-Y. et al. A comparative evaluation of sonomyography, electromyography, force, and wrist angle in a discrete tracking task. Ultrasound Med. Biol. 37, 884–891 (2011).

    Article  Google Scholar 

  149. Lou, C., Yang, S., Ji, Z., Chen, Q. & Xing, D. Ultrashort microwave-induced thermoacoustic imaging: a breakthrough in excitation efficiency and spatial resolution. Phys. Rev. Lett. 109, 218101 (2012).

    Article  Google Scholar 

  150. Choi, S., Park, E.-Y., Park, S., Kim, J. H. & Kim, C. Synchrotron X-ray induced acoustic imaging. Sci. Rep. 11, 4047 (2021).

    Article  Google Scholar 

  151. Park, J. et al. Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. 3, 193–212 (2024).

    Article  Google Scholar 

  152. Gao, X. et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022).

    Article  Google Scholar 

  153. Park, J. et al. Opto-ultrasound biosensor for wearable and mobile devices: realization with a transparent ultrasound transducer. Biomed. Opt. Express 13, 4684–4692 (2022).

    Article  Google Scholar 

  154. Park, B. et al. 3D wide‐field multispectral photoacoustic imaging of human melanomas in vivo: a pilot study. J. Eur. Acad. Dermatol. Venereol. 35, 669–676 (2021).

    Article  Google Scholar 

  155. Feng, T. et al. Detection of collagen by multi-wavelength photoacoustic analysis as a biomarker for bone health assessment. Photoacoustics 24, 100296 (2021).

    Article  Google Scholar 

  156. Jin, H. et al. A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring. Nat. Commun. 14, 4692 (2023).

    Article  Google Scholar 

  157. Liu, Y.-H. et al. Transparent flexible piezoelectric ultrasound transducer for photoacoustic imaging system. IEEE Sens. J. 22, 2070–2077 (2022).

    Article  Google Scholar 

  158. Zakrzewski, A. M., Huang, A. Y., Zubajlo, R. & Anthony, B. W. Real-time blood pressure estimation from force-measured ultrasound. IEEE Trans. Biomed. Eng. 65, 2405–2416 (2018).

    Article  Google Scholar 

  159. Jaffe, A. T., Zubajlo, R. E., Daniel, L. & Anthony, B. W. Automated force-coupled ultrasound method for calibration-free carotid artery blood pressure estimation. Ultrasound Med. Biol. 48, 1806–1821 (2022).

    Article  Google Scholar 

  160. Jaffe, A., Goryachev, I., Sodini, C. & Anthony, B. W. Central venous pressure estimation with force-coupled ultrasound of the internal jugular vein. Sci. Rep. 13, 1500 (2023).

    Article  Google Scholar 

  161. Soto, J. T. et al. Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy. Eur. Heart J. Digit. Health 3, 380–389 (2022).

    Article  Google Scholar 

  162. Petrozziello, A., Redman, C. W., Papageorghiou, A. T., Jordanov, I. & Georgieva, A. Multimodal convolutional neural networks to detect fetal compromise during labor and delivery. IEEE Access 7, 112026–112036 (2019).

    Article  Google Scholar 

  163. Atrey, K., Singh, B. K. & Bodhey, N. K. Multimodal classification of breast cancer using feature level fusion of mammogram and ultrasound images in machine learning paradigm. Multimed. Tools Appl. 83, 21347–21368 (2024).

    Article  Google Scholar 

  164. Izadifar, Z., Babyn, P. & Chapman, D. Mechanical and biological effects of ultrasound: a review of present knowledge. Ultrasound Med. Biol. 43, 1085–1104 (2017).

    Article  Google Scholar 

  165. Manasseh, R. in Handbook of Ultrasonics and Sonochemistry (eds Ashokkumar, M. et al.) 33–68 (Springer, 2016).

  166. Sundaram, J., Mellein, B. R. & Mitragotri, S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys. J. 84, 3087–3101 (2003).

    Article  Google Scholar 

  167. Wu, J. Acoustic streaming and its applications. Fluids 3, 108 (2018).

    Article  Google Scholar 

  168. Pitt, W. G., Husseini, G. A. & Staples, B. J. Ultrasonic drug delivery — a general review. Expert. Opin. Drug. Deliv. 1, 37–56 (2004).

    Article  Google Scholar 

  169. Quarato, C. M. I. et al. A review on biological effects of ultrasounds: key messages for clinicians. Diagnostics 13, 855 (2023).

    Article  Google Scholar 

  170. Ter Haar, G. HIFU tissue ablation: concept and devices. Therapeutic Ultrasound 880, 3–20 (2016).

    Article  Google Scholar 

  171. Jang, H. J., Lee, J.-Y., Lee, D.-H., Kim, W.-H. & Hwang, J. H. Current and future clinical applications of high-intensity focused ultrasound (HIFU) for pancreatic cancer. Gut Liver 4, S57–S61 (2010).

    Article  Google Scholar 

  172. Plaksin, M., Shapira, E., Kimmel, E. & Shoham, S. Thermal transients excite neurons through universal intramembrane mechanoelectrical effects. Phys. Rev. X 8, 011043 (2018).

    Google Scholar 

  173. Ye, J. et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett. 18, 4148–4155 (2018).

    Article  Google Scholar 

  174. Kim, E. et al. Wearable transcranial ultrasound system for remote stimulation of freely moving animal. IEEE Trans. Biomed. Eng. 68, 2195–2202 (2021).

    Article  Google Scholar 

  175. Wasilczuk, K. M. et al. Modulating the inflammatory reflex in rats using low-intensity focused ultrasound stimulation of the vagus nerve. Ultrasound Med. Biol. 45, 481–489 (2019).

    Article  Google Scholar 

  176. Herlihy, R. A. et al. Investigation of non-invasive focused ultrasound efficacy on depressive-like behavior in hemiparkinsonian rats. Exp. Brain Res. 242, 321–336 (2024).

    Article  Google Scholar 

  177. Ji, N. et al. Blood pressure modulation with low-intensity focused ultrasound stimulation to the vagus nerve: a pilot animal study. Front. Neurosci. 14, 586424 (2020).

    Article  Google Scholar 

  178. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005).

    Article  Google Scholar 

  179. Rossmann, C., McCrackin, M. A., Armeson, K. E. & Haemmerich, D. Temperature sensitive liposomes combined with thermal ablation: effects of duration and timing of heating in mathematical models and in vivo. PLoS One 12, e0179131 (2017).

    Article  Google Scholar 

  180. Yadollahpour, A., Mostafa, J., Samaneh, R. & Zohreh, R. Ultrasound therapy for wound healing: a review of current techniques and mechanisms of action. J. Pure Appl. Microbiol. 8, 4071–4085 (2014).

    Google Scholar 

  181. Samuels, J. A. et al. Low-frequency (<100 kHz), low-intensity (<100 mW/cm2) ultrasound to treat venous ulcers: a human study and in vitro experiments. J. Acoust. Soc. Am. 134, 1541–1547 (2013).

    Article  Google Scholar 

  182. Liu, H. et al. Bone fracture healing under the intervention of a stretchable ultrasound array. ACS Nano 18, 19549–19560 (2024).

    Google Scholar 

  183. Hemery, X., Ohl, X., Saddiki, R., Barresi, L. & Dehoux, E. Low-intensity pulsed ultrasound for non-union treatment: a 14-case series evaluation. Orthop. Traumatol. Surg. Res. 97, 51–57 (2011).

    Article  Google Scholar 

  184. Harrison, A. & Alt, V. Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing — a narrative review. Injury 52, S91–S96 (2021).

    Article  Google Scholar 

  185. Harrison, A., Lin, S., Pounder, N. & Mikuni-Takagaki, Y. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 70, 45–52 (2016).

    Article  Google Scholar 

  186. Schandelmaier, S. et al. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. Br. Med. J. 356, j656 (2017).

    Article  Google Scholar 

  187. Inoue, S. et al. Effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on rat bone defect healing. Ann. NY Acad. Sci. 1497, 3–14 (2021).

    Article  Google Scholar 

  188. Hannemann, P., Mommers, E., Schots, J., Brink, P. & Poeze, M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch. Orthop. Trauma Surg. 134, 1093–1106 (2014).

    Article  Google Scholar 

  189. Lewis, G. K. Jr, Langer, M. D., Henderson, C. R. Jr & Ortiz, R. Design and evaluation of a wearable self-applied therapeutic ultrasound device for chronic myofascial pain. Ultrasound Med. Biol. 39, 1429–1439 (2013).

    Article  Google Scholar 

  190. Cheng, J. L. & MacDonald, M. J. Effect of heat stress on vascular outcomes in humans. J. Appl. Physiol. 126, 771–781 (2019).

    Article  Google Scholar 

  191. Aiyer, R. et al. Therapeutic ultrasound for chronic pain management in joints: a systematic review. Pain Med. 21, 1437–1448 (2020).

    Article  Google Scholar 

  192. Uddin, S. M. Z., Komatsu, D. E., Motyka, T. & Petterson, S. Low-intensity continuous ultrasound therapies — a systematic review of current state-of-the-art and future perspectives. J. Clin. Med. 10, 2698 (2021).

    Article  Google Scholar 

  193. Jiang, L. et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy 56, 216–224 (2019).

    Article  Google Scholar 

  194. Morales González, R., Marzo, A., Freeman, E., Frier, W. & Georgiou, O. Ultrapower: Powering tangible & wearable devices with focused ultrasound. In Proc. 15th International Conference on Tangible, Embedded, and Embodied Interaction 1–13 (2021).

  195. Li, S. et al. Ultrasound-driven piezoelectric current activates spinal cord neurocircuits and restores locomotion in rats with spinal cord injury. Bioelectron. Med. 6, 13 (2020).

    Article  Google Scholar 

  196. Alam, M. et al. Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury. J. Neuroeng. Rehabil. 16, 36 (2019).

    Article  Google Scholar 

  197. Jin, P. et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7, eabg2507 (2021).

    Article  Google Scholar 

  198. Wei, X. & Liu, J. Power sources and electrical recharging strategies for implantable medical devices. FEPE China 2, 1–13 (2008).

    Google Scholar 

  199. Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    Article  Google Scholar 

  200. Food and Drug Administration. Marketing Clearance of Diagnostic Ultrasound Systems and Transducers: Guidance for Industry and Food and Drug Administration Staff (2023).

  201. Duck, F. A. Medical and non-medical protection standards for ultrasound and infrasound. Prog. Biophys. Mol. Biol. 93, 176–191 (2007).

    Article  Google Scholar 

  202. Song, P. et al. Clinical, safety and engineering perspectives on wearable ultrasound technology: a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 71, 730–744 (2023).

    Article  Google Scholar 

  203. Abramowicz, J. S. et al. AIUM official statement for recommended maximum scanning times for displayed thermal index values. J. Med. Ultrasound 42, E74–E75 (2023).

    Google Scholar 

  204. British Medical Ultrasound Society Guidelines for the safe use of diagnostic ultrasound equipment. Ultrasound 18, 52–59 (2010).

    Article  Google Scholar 

  205. Mariappan, Y. K., Glaser, K. J. & Ehman, R. L. Magnetic resonance elastography: a review. Clin. Anat. 23, 497–511 (2010).

    Article  Google Scholar 

  206. Elkins, C. J. & Alley, M. T. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp. Fluids 43, 823–858 (2007).

    Article  Google Scholar 

  207. International Electrotechnical Commission. IEC 60601-2-37 Medical Electrical Equipment – Part 2 – 37: Particular Requirements for the Basic Safety and Essential Performance of Ultrasonic Medical Diagnostic and Monitoring Equipment, edition 2.1 (2015).

  208. International Electrotechnical Commission. IEC 62359:2010/AMD1:2017 Ultrasonics – Field Characterization – Test Methods for the Determination of Thermal and Mechanical Indices Related To Medical Diagnostic Ultrasonic Fields, edition 2.1 (2017).

  209. Bigelow, T. A. et al. The thermal index: its strengths, weaknesses, and proposed improvements. J. Med. Ultrasound 30, 714–734 (2011).

    Article  Google Scholar 

  210. Odéen, H., Almquist, S., de Bever, J., Christensen, D. A. & Parker, D. L. MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling. J. Ther. Ultrasound 4, 1–13 (2016).

    Article  Google Scholar 

  211. Odéen, H. & Parker, D. L. Magnetic resonance thermometry and its biological applications — physical principles and practical considerations. Prog. Nucl. Magn. Reson. Spectrosc. 110, 34–61 (2019).

    Article  Google Scholar 

  212. Banerjee, S., Hemphill, T. & Longstreet, P. Wearable devices and healthcare: data sharing and privacy. Inform. Soc. 34, 49–57 (2018).

    Article  Google Scholar 

  213. Pandit, J. A., Pawelek, J. B., Leff, B. & Topol, E. J. The hospital at home in the USA: current status and future prospects. NPJ Digit. Med. 7, 48 (2024).

    Article  Google Scholar 

  214. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

    Article  Google Scholar 

  215. Ali, R. et al. Aberration correction in diagnostic ultrasound: a review of the prior field and current directions. Z. Med. Phys. 33, 267–291 (2023).

    Article  Google Scholar 

  216. Lane, C. J. The inspection of curved components using flexible ultrasonic arrays and shape sensing fibres. Case Stud. Nondestr.Test. Eval. 1, 13–18 (2014).

    Google Scholar 

  217. Noda, T., Tomii, N., Nakagawa, K., Azuma, T. & Sakuma, I. Shape estimation algorithm for ultrasound imaging by flexible array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67, 2345–2353 (2020).

    Article  Google Scholar 

  218. Mallart, R. & Fink, M. The van Cittert–Zernike theorem in pulse echo measurements. J. Am. Stat. Assoc. 90, 2718–2727 (1991).

    Google Scholar 

  219. Nock, L., Trahey, G. E. & Smith, S. W. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Acoust. Soc. Am. 85, 1819–1833 (1989).

    Article  Google Scholar 

  220. Mallart, R. & Fink, M. Adaptive focusing in scattering media through sound-speed inhomogeneities: the van Cittert Zernike approach and focusing criterion. J. Am. Stat. Assoc. 96, 3721–3732 (1994).

    Google Scholar 

  221. Nock, L., Trahey, G. E. & Smith, S. W. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Am. Stat. Assoc. 85, 1819–1833 (1989).

    Google Scholar 

  222. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    Article  Google Scholar 

  223. Opacic, T. et al. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat. Commun. 9, 1527 (2018).

    Article  Google Scholar 

  224. Christensen-Jeffries, K. et al. Super-resolution ultrasound imaging. Ultrasound Med. Biol. 46, 865–891 (2020).

    Article  Google Scholar 

  225. Ilovitsh, T., Ilovitsh, A., Foiret, J., Fite, B. Z. & Ferrara, K. W. Acoustical structured illumination for super-resolution ultrasound imaging. Commun. Biol. 1, 3 (2018).

    Article  Google Scholar 

  226. Lin, J. & Ma, C. Far-field acoustic subwavelength imaging with blind structured illumination and joint-sparsity reconstruction. Phys. Rev. Appl. 17, 054030 (2022).

    Article  Google Scholar 

  227. Chen, X. et al. Superresolution structured illumination microscopy reconstruction algorithms: a review. Light. Sci. Appl. 12, 172 (2023).

    Article  Google Scholar 

  228. Nelson, T. R. & Pretorius, D. H. Three-dimensional ultrasound imaging. Ultrasound Med. Biol. 24, 1243–1270 (1998).

    Article  Google Scholar 

  229. Harrington, T. & Liu, S.-N. in Review of Progress in Quantitative Nondestructive Evaluation: 8, Part A and B (eds Thompson, D. O. & Chimenti, D. E.) 1067–1074 (Springer, 1989).

  230. Seo, C. H. & Yen, J. T. A 256 × 256 2-D array transducer with row-column addressing for 3-D rectilinear imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 837–847 (2009).

    Article  Google Scholar 

  231. Rasmussen, M. F. & Jensen, J. A. in Medical Imaging 2013: Ultrasonic Imaging, Tomography, and Therapy 73–83 (SPIE, 2013).

  232. Ramalli, A., Boni, E., Savoia, A. S. & Tortoli, P. Density-tapered spiral arrays for ultrasound 3-D imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 62, 1580–1588 (2015).

    Article  Google Scholar 

  233. Wei, L. et al. Sparse 2-D PZT-on-PCB arrays with density tapering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69, 2798–2809 (2022).

    Article  Google Scholar 

  234. Rothberg, J. M. et al. Ultrasound-on-chip platform for medical imaging, analysis, and collective intelligence. Proc. Natl Acad. Sci. USA 118, e2019339118 (2021).

    Article  Google Scholar 

  235. Yin, L. et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Article  Google Scholar 

  236. Yan, Z. et al. Recent advances in breathable electronics. Nano Res. 16, 4130–4142 (2023).

    Article  Google Scholar 

  237. Hu, H. J. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4, eaar3979 (2018).

    Article  Google Scholar 

  238. Li, X. et al. Micromachined PIN–PMN–PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1171–1178 (2014).

    Article  Google Scholar 

  239. Lee, J.-H. et al. Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation. Microsyst. Technol. 23, 2321–2328 (2016).

    Article  Google Scholar 

  240. Lin, D.-S., Zhuang, X., Wong, S. H., Kupnik, M. & Khuri-Yakub, B. T. Encapsulation of capacitive micromachined ultrasonic transducers using viscoelastic polymer. J. Microelectromech. Syst. 19, 1341–1351 (2010).

    Article  Google Scholar 

  241. AlMohimeed, I. & Ono, Y. Ultrasound measurement of skeletal muscle contractile parameters using flexible and wearable single-element ultrasonic sensor. Sensors 20, 3616 (2020).

    Article  Google Scholar 

  242. Tran, K. et al. Lung sliding detection in M-mode using wearable ultrasonic sensor: an in-vivo feasibility study. In 2023 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2023).

  243. Frija, G. et al. How to improve access to medical imaging in low- and middle-income countries? EClinicalMedicine 38, 101034 (2021).

    Article  Google Scholar 

  244. Mariani, G. et al. Improving women’s health in low-income and middle-income countries. Part II: The needs of diagnostic imaging. Nucl. Med. Commun. 38, 1024–1028 (2017).

    Article  Google Scholar 

  245. Frija, G., Salama, D. H., Kawooya, M. G. & Allen, B. A paradigm shift in point-of-care imaging in low-income and middle-income countries. EClinicalMedicine 62, 102114 (2023).

    Article  Google Scholar 

  246. Maru, D. S.-R. et al. Turning a blind eye: the mobilization of radiology services in resource-poor regions. Glob. Health 6, 18 (2010).

    Article  Google Scholar 

  247. Robertson, T. E. et al. Remote tele-mentored ultrasound for non-physician learners using FaceTime: a feasibility study in a low-income country. J. Crit. Care 40, 145–148 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Institutes of Health (1R21EB025521-01, 1R21EB027303-01A1, 3R21EB027303-02S1, 1R01EB033464-01 and 1R01HL171652-01). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

S.Z., G.P. and M.L. contributed equally to the literature review, figure design and manuscript writing. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Sheng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks ChengKuo Lee, Francesco Greco, Laura Ferrari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ceramic counterparts (Young’s modulus ~50GPa): https://support.piezo.com/article/62-material-properties

Drexel University: https://drexel.edu/news/archive/2016/november/ultrasound-wound-healing-device

Electromechanical coupling coefficient (0.170.58): https://www.ctscorp.com/Product-Series/3203HD.htm

Mobile phone integrated probes: https://www.butterflynetwork.com/teleguidance

PIN–PMN-PT: https://www.trstechnologies.com/Materials/High-Performance-PMN-PT-Piezoelectric-Single-Crystal

Vibration amplitude: https://www.americanpiezo.com/knowledge-center/piezo-theory/piezoelectric-constants/#:~:Text=For%20a%20thin%20disc%20of

ZetrOZ Systems LLC: https://samrecover.com/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Park, G., Lin, M. et al. Wearable ultrasound technology. Nat Rev Bioeng 3, 835–854 (2025). https://doi.org/10.1038/s44222-025-00329-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00329-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing