Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Psychology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications psychology
  3. articles
  4. article
Pre-stimulus alpha power modulates trial-by-trial variability in theta rhythmic multisensory entrainment strength and theta-induced memory effect
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 28 January 2026

Pre-stimulus alpha power modulates trial-by-trial variability in theta rhythmic multisensory entrainment strength and theta-induced memory effect

  • Danying Wang  ORCID: orcid.org/0000-0003-0543-70361,2,
  • Eleonora Marcantoni  ORCID: orcid.org/0000-0003-1137-49832,
  • Kimron L. Shapiro3 &
  • …
  • Simon Hanslmayr  ORCID: orcid.org/0000-0003-4448-21472 

Communications Psychology , Article number:  (2026) Cite this article

  • 438 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Human behaviour
  • Long-term memory

Abstract

Binding multisensory information into episodic memory depends partly on the timing of the hippocampal theta rhythm which provides time windows for synaptic modification. In humans, theta rhythmic sensory stimulation (RSS) enhances episodic memory when the stimuli are synchronised across the visual and auditory domain compared to when they are out-of-synchrony. However, recent studies show mixed evidence if the improvement in episodic memory is the result of modulating hippocampal theta activity. In the current study, we investigated whether pre-stimulus brain state could explain part of this variance in the neural and behavioural effects induced by the RSS, via recording 24 participants’ brain activity with MEG during a multisensory theta RSS memory paradigm. Our findings suggest that pre-stimulus alpha power modulates entrainment strength in sensory regions, which in turn predicts subsequent memory formation. These findings suggest that for non-invasive brain stimulation tools to be effective it is crucial to consider brain-state dependent effects.

Similar content being viewed by others

Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory

Article Open access 16 February 2024

Transcranial magnetic stimulation entrains alpha oscillatory activity in occipital cortex

Article Open access 17 September 2021

Behavioural effects of task-relevant neuromodulation by rTMS on giving-up

Article Open access 18 November 2021

Data availability

Preprocessed data are available from https://doi.org/10.6084/m9.figshare.29468597. Any additional information required to reanalyse the data reported in this paper is available upon request.

Code availability

All original code has been deposited at https://osf.io/skm4q/.

References

  1. Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    Google Scholar 

  2. Moscovitch, M. The hippocampus as a ‘stupid,’ domain-specific module: Implications for theories of recent and remote memory, and of imagination. Can. J. exp. Psychol 62, 62–79 (2008).

    Google Scholar 

  3. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

    Google Scholar 

  4. Bliss, T. V. P. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

    Google Scholar 

  5. Neves, G., Cooke, S. F. & Bliss, T. V. P. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75 (2008).

    Google Scholar 

  6. Hölscher, C., Anwyl, R. & Rowan, M. J. Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J. Neurosci. 17, 6470–6477 (1997).

    Google Scholar 

  7. Huerta, P. T. & Lisman, J. E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15, 1053–1063 (1995).

    Google Scholar 

  8. Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A. & Hasselmo, M. E. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J. Neurosci. 23, 11725–11731 (2003).

    Google Scholar 

  9. Clouter, A., Shapiro, K. L. & Hanslmayr, S. Theta phase synchronization is the glue that binds human associative memory. Curr. Biol. 27, 3143–3148.e6 (2017).

    Google Scholar 

  10. Hanslmayr, S., Axmacher, N. & Inman, C. S. Modulating human memory via entrainment of brain oscillations. Trends Neurosci. 42, 485–499 (2019).

    Google Scholar 

  11. Wang, D., Clouter, A., Chen, Q., Shapiro, K. L. & Hanslmayr, S. Single-trial phase entrainment of theta oscillations in sensory regions predicts human associative memory performance. J. Neurosci. 38, 6299–6309 (2018).

    Google Scholar 

  12. Plog, E., Antov, M. I., Bierwirth, P., Keil, A. & Stockhorst, U. Phase-synchronized stimulus presentation augments contingency knowledge and affective evaluation in a fear-conditioning task. eNeuro 9, ENEURO.0538–20.2021 (2022).

  13. Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J. & Nobre, A. C. Inter- and intra-individual variability in alpha peak frequency. NeuroImage 92, 46–55 (2014).

    Google Scholar 

  14. Aton, S. J. Set and setting: how behavioral state regulates sensory function and plasticity. Neurobiol. Learn. Mem. 106, 1–10 (2013).

    Google Scholar 

  15. Bergmann, T. O. Brain state-dependent brain stimulation. Front. Psychol. 9, 2108 (2018).

  16. Rutishauser, U., Kotowicz, A. & Laurent, G. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals. J. Neurosci. Methods 215, 139–155 (2013).

    Google Scholar 

  17. Tang, Y.-Y., Rothbart, M. K. & Posner, M. I. Neural correlates of establishing, maintaining, and switching brain states. Trends Cogn. Sci. 16, 330–337 (2012).

    Google Scholar 

  18. Serin, F., Wang, D., Davis, M. H. & Henson, R. Does theta synchronicity of sensory information enhance associative memory? Replicating the theta-induced memory effect. Brain Neurosci. Adv. 8, 23982128241255798 (2024).

    Google Scholar 

  19. Kahn, M. et al. Gamma sensory stimulation and effects on the brain. Preprint at https://doi.org/10.1101/2023.10.30.564197 (2023).

  20. Adaikkan, C. & Tsai, L.-H. Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities. Trends Neurosci. 43, 24–41 (2020).

    Google Scholar 

  21. Martorell, A. J. et al. Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell 177, 256–271.e22 (2019).

    Google Scholar 

  22. Schneider, M., Tzanou, A., Uran, C. & Vinck, M. Cell-type-specific propagation of visual flicker. Cell Reports 42, 5 (2023).

  23. Soula, M. et al. Forty-hertz light stimulation does not entrain native gamma oscillations in Alzheimer’s disease model mice. Nat. Neurosci. 26, 570–578 (2023).

    Google Scholar 

  24. Wang, D., Shapiro, K. L. & Hanslmayr, S. Altering stimulus timing via fast rhythmic sensory stimulation induces STDP-like recall performance in human episodic memory. Curr. Biol. 33, 3279–3288.e7 (2023).

    Google Scholar 

  25. Müller, M. M. et al. Feature-selective attention enhances color signals in early visual areas of the human brain. Proc. Natl. Acad. Sci. USA 103, 14250–14254 (2006).

    Google Scholar 

  26. Obleser, J. & Kayser, C. Neural entrainment and attentional selection in the listening brain. Trends Cogn. Sci. 23, 913–926 (2019).

    Google Scholar 

  27. Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    Google Scholar 

  28. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Google Scholar 

  29. Kleiner, M., Brainard, D. & Pelli, D. G. What’s new in Psychtoolbox-3? 14, (2007).

  30. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Google Scholar 

  31. Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013).

  32. Ferrante, O. et al. FLUX: a pipeline for MEG analysis. NeuroImage 253, 119047 (2022).

    Google Scholar 

  33. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    Google Scholar 

  34. Murzin, V., Fuchs, A. & Scott Kelso, J. A. Detection of correlated sources in EEG using combination of beamforming and surface Laplacian methods. J. Neurosci. Methods 218, 96–102 (2013).

    Google Scholar 

  35. JASP Team. JASP. (2025).

  36. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

  37. Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res. Rev. 53, 63–88 (2007).

    Google Scholar 

  38. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Human Neurosci. 4, 186 (2010).

  39. Hanslmayr, S., Staudigl, T. & Fellner, M.-C. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis. Front. Human Neurosci. 6, 74 (2012).

  40. Popov, T. Misinterpreting electrophysiology in human cognitive neuroscience. 2025.06.25.661032 Preprint at https://doi.org/10.1101/2025.06.25.661032 (2025).

  41. Popov, T. & Staudigl, T. Cortico-ocular coupling in the service of episodic memory formation. Prog. Neurobiol. 227, 102476 (2023).

    Google Scholar 

  42. Lachaux, J.-P. et al. Studying single-trials of phase synchronous activity in the brain. Int. J. Bifurc. Chaos 10, 2429–2439 (2000).

    Google Scholar 

  43. Van Veen, B. D., Van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997).

    Google Scholar 

  44. Händel, B. F., Haarmeier, T. & Jensen, O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. J. Cogn. Neurosci. 23, 2494–2502 (2011).

    Google Scholar 

  45. Kelly, S. P., Gomez-Ramirez, M. & Foxe, J. J. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study. Eur. J. Neurosci. 30, 2224–2234 (2009).

    Google Scholar 

  46. Sauseng, P. et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur. J. Neurosci. 22, 2917–2926 (2005).

    Google Scholar 

  47. Shapiro, K. & Hanslmayr, S. The role of brain oscillations in the temporal limits of attention. in The Oxford Handbook of Attention 620–651 (Oxford University Press, 2014).

  48. Snyder, A. C. & Foxe, J. J. Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study. J. Neurosci. 30, 4024–4032 (2010).

    Google Scholar 

  49. Dijk, H. van, Schoffelen, J.-M., Oostenveld, R. & Jensen, O. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J. Neurosci. 28, 1816–1823 (2008).

    Google Scholar 

  50. Benwell, C. S. Y. et al. Frequency and power of human alpha oscillations drift systematically with time-on-task. NeuroImage 192, 101–114 (2019).

    Google Scholar 

  51. Behrmann, M., Geng, J. J. & Shomstein, S. Parietal cortex and attention. Curr. Opin. Neurobiol. 14, 212–217 (2004).

    Google Scholar 

  52. Simeonov, L. & Das, R. The rhythm of memory. Does theta frequency audio/visual flicker improve recall? Front. Behav. Neurosci. 19, 1555081 (2025).

  53. Blanpain, L. T. et al. Multisensory flicker modulates widespread brain networks and reduces interictal epileptiform discharges. Nat. Commun. 15, 3156 (2024).

    Google Scholar 

  54. Biau, E., Wang, D., Park, H., Jensen, O. & Hanslmayr, S. Neocortical and hippocampal theta oscillations track audiovisual integration and replay of speech memories. J. Neurosci. 45, 21 (2025).

  55. Gould, I. C., Rushworth, M. F. & Nobre, A. C. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. J. Neurophysiol. 105, 1318–1326 (2011).

    Google Scholar 

  56. Hanslmayr, S. et al. Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage 37, 1465–1473 (2007).

    Google Scholar 

  57. Rohenkohl, G. & Nobre, A. C. Alpha oscillations related to anticipatory attention follow temporal expectations. J. Neurosci. 31, 14076–14084 (2011).

    Google Scholar 

  58. Thut, G., Nietzel, A., Brandt, S. A. & Pascual-Leone, A. α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502 (2006).

    Google Scholar 

  59. Park, H. et al. Blocking of irrelevant memories by posterior alpha activity boosts memory encoding. Hum. Brain Mapp. 35, 3972–3987 (2014).

    Google Scholar 

  60. Jensen, O. Distractor inhibition by alpha oscillations is controlled by an indirect mechanism governed by goal-relevant information. Commun. Psychol. 2, 36 (2024).

    Google Scholar 

  61. Zhigalov, A. & Jensen, O. Alpha oscillations do not implement gain control in early visual cortex but rather gating in parieto-occipital regions. Hum. Brain Mapp. 41, 5176–5186 (2020).

    Google Scholar 

  62. Griffiths, B. J., Martín-Buro, M. C., Staresina, B. P., Hanslmayr, S. & Staudigl, T. Alpha/beta power decreases during episodic memory formation predict the magnitude of alpha/beta power decreases during subsequent retrieval. Neuropsychologia 153, 107755 (2021).

    Google Scholar 

  63. Griffiths, B. J., Martín-Buro, M. C., Staresina, B. P. & Hanslmayr, S. Disentangling neocortical alpha/beta and hippocampal theta/gamma oscillations in human episodic memory formation. NeuroImage 242, 118454 (2021).

    Google Scholar 

  64. Antony, J. W., Ngo, H.-V. V., Bergmann, T. O. & Rasch, B. Real-time, closed-loop, or open-loop stimulation? Navigating a terminological jungle. J. Sleep. Res. 31, e13755 (2022).

    Google Scholar 

  65. Marguet, S. L. & Harris, K. D. State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci. 31, 6414–6420 (2011).

    Google Scholar 

  66. Lakatos, P. et al. Global dynamics of selective attention and its lapses in primary auditory cortex. Nat. Neurosci. 19, 1707–1717 (2016).

    Google Scholar 

  67. Chun, M. M. & Turk-Browne, N. B. Interactions between attention and memory. Curr. Opin. Neurobiol. 17, 177–184 (2007).

    Google Scholar 

  68. Zoefel, B. & VanRullen, R. Oscillatory mechanisms of stimulus processing and selection in the visual and auditory systems: state-of-the-art, speculations and suggestions. Front. Neurosci. 11, 296 (2017).

  69. Hsu, T.-Y., Tseng, P., Liang, W.-K., Cheng, S.-K. & Juan, C.-H. Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage 98, 306–313 (2014).

    Google Scholar 

  70. Silvanto, J., Muggleton, N. & Walsh, V. State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454 (2008).

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Economic Social Sciences Research Council (https://esrc.ukri.org/, ES/R010072/1 to S.H. and K.L.S.) and the Medical Research Council Doctoral Training Program in Precision Medicine (MR/W006804/1 to E.M.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors would like to thank Gabriela Cruz, Máté Gyurkovics, Hamed Haque, and Felix Siebenhühner from the Palva lab for their help on the MEG preprocessing pipeline, and Frances Crabbe, Xuan Cui, Jacqueline McDiarmid, and Gavin Paterson for their help on MEG and MRI data acquisition, and everyone from the Neurotechnology, Cognition and Oscillations Lab and Professor Maria Wimber’s lab at the University of Glasgow for their helpful inputs. The authors would also like to thank Tzvetan Popov for his suggestions and for sharing code on the eye tracking data analysis.

Author information

Authors and Affiliations

  1. Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, UK

    Danying Wang

  2. School of Psychology and Neuroscience and Centre for Neurotechnology, University of Glasgow, Glasgow, UK

    Danying Wang, Eleonora Marcantoni & Simon Hanslmayr

  3. School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK

    Kimron L. Shapiro

Authors
  1. Danying Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Eleonora Marcantoni
    View author publications

    Search author on:PubMed Google Scholar

  3. Kimron L. Shapiro
    View author publications

    Search author on:PubMed Google Scholar

  4. Simon Hanslmayr
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, S.H., K.L.S. and D.W.; investigation, D.W. and E. M.; formal analysis, and writing—original draft, D.W.; writing—review and editing, D.W., E.M., K.L.S. and S.H.; funding acquisition, and supervision, S.H. and K.L.S.

Corresponding authors

Correspondence to Danying Wang or Simon Hanslmayr.

Ethics declarations

Competing interests

S.H. acts as scientific adviser to Clarity Technologies Inc. All other authors declare no competing interests.

Peer review

Peer review information

Communications Psychology thanks Roxane S. Hoyer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Troby Ka-Yan Lui. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Marcantoni, E., Shapiro, K.L. et al. Pre-stimulus alpha power modulates trial-by-trial variability in theta rhythmic multisensory entrainment strength and theta-induced memory effect. Commun Psychol (2026). https://doi.org/10.1038/s44271-026-00406-x

Download citation

  • Received: 22 July 2025

  • Accepted: 16 January 2026

  • Published: 28 January 2026

  • DOI: https://doi.org/10.1038/s44271-026-00406-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Editors
  • Editorial Board
  • Open Access
  • Journal Metrics
  • Calls for Papers
  • Referees
  • Article Processing Charges
  • Contact
  • Editorial policies
  • Conferences
  • Editorial Values Statement

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Psychology (Commun Psychol)

ISSN 2731-9121 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing