Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexible hemline-shaped microfibers for liquid transport

Abstract

Directional liquid transport is important in both fundamental studies and industrial applications. Most existing strategies rely on the use of predesigned surfaces with sophisticated microstructures that limit the versatility and universality of the liquid transport. Here we present a platform for liquid transport based on flexible microfluidic-derived fibers with hemline-shaped cross-sections. These microfibers have periodic parallel microcavities along the axial direction, with sharp edges and wedge corners that enable unilateral pinning and capillary rise of liquids. This structure enables directional liquid transport along hydrophilic substrates with the use of a single fiber. Alternatively, a pair of fibers enables directional liquid transport along hydrophobic substrates or even without any additional substrate; the directional transport behavior applies to a wide range of liquids. We demonstrate the use of these fibers in open microfluidics, water extraction and liquid transport along arbitrary three-dimensional paths. Our platform provides a facile and universal solution for directional liquid transport in a range of different scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of a hemline-shaped jet template from piezoelectric microfluidics.
Fig. 2: Characterization of the hemline-shaped microfibers.
Fig. 3: Directional liquid transport along a hemline-shaped microfiber attached to a hydrophilic substrate.
Fig. 4: Continuous liquid transport on two contacting microfibers.
Fig. 5: Applications of the hemline-shaped fibers bearing unidirectional liquid transport capabilities.

Similar content being viewed by others

Data availability

All data are available within the paper and its Supplementary Information.

References

  1. Feng, S. et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science 373, 1344–1348 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Li, S. et al. Hydrophobic polyamide nanofilms provide rapid transport for crude oil separation. Science 377, 1555–1561 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Fu, C., Gu, L., Zeng, Z. & Xue, Q. Simply adjusting the unidirectional liquid transport of scalable janus membranes toward moisture-wicking fabric, rapid demulsification, and fast oil/water separation. ACS Appl. Mater. Interfaces 12, 51102–51113 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Cacucciolo, V. et al. Stretchable pumps for soft machines. Nature 572, 516–519 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Dudukovic, N. A. et al. Cellular fluidics. Nature 595, 58–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Raux, P. S., Gravelle, S. & Dumais, J. Design of a unidirectional water valve in Tillandsia. Nat. Commun. 11, 396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, H. et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    Article  PubMed  Google Scholar 

  9. Yafia, M. et al. Microfluidic chain reaction of structurally programmed capillary flow events. Nature 605, 464–469 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Aleman, J., Kilic, T., Mille, L. S., Shin, S. R. & Zhang, Y. S. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat. Protoc. 16, 2564–2593 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Battat, S., Weitz, D. A. & Whitesides, G. M. An outlook on microfluidics: the promise and the challenge. Lab Chip 22, 530–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Hou, X. et al. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. 9, 733 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kong, T., Shum, H. C. & Weitz, D. A. The fourth decade of microfluidics. Small 16, 2000070 (2020).

    Article  CAS  Google Scholar 

  14. Cira, N. J., Benusiglio, A. & Prakash, M. Vapour-mediated sensing and motility in two-component droplets. Nature 519, 446–450 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Malinowski, R., Parkin, I. P. & Volpe, G. Nonmonotonic contactless manipulation of binary droplets via sensing of localized vapor sources on pristine substrates. Sci. Adv. 6, eaba3636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).

    Article  CAS  Google Scholar 

  17. Ichimura, K., Oh, S.-K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, W. et al. Triboelectric wetting for continuous droplet transport. Sci. Adv. 8, eade2085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, W., Tang, X. & Wang, L. Photopyroelectric microfluidics. Sci. Adv. 6, eabc1693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kwon, G. et al. Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nat. Commun. 8, 14968 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lv, J. A. et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Dai, H., Dong, Z. & Jiang, L. Directional liquid dynamics of interfaces with superwettability. Sci. Adv. 6, eabb5528 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Chu, K.-H., Xiao, R. & Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Ju, J. et al. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 3, 1247 (2012).

    Article  PubMed  Google Scholar 

  26. Li, J. et al. Topological liquid diode. Sci. Adv. 3, eaao3530 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Jong, E., Wang, Y., Den Toonder, J. M. J. & Onck, P. R. Climbing droplets driven by mechanowetting on transverse waves. Sci. Adv. 5, eaaw0914 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    Article  CAS  Google Scholar 

  29. Shi, Z., Tang, Z., Xu, B., Jiang, L. & Liu, H. Bioinspired directional liquid transport induced by the corner effect. Nano Res. 16, 3913–3923 (2023).

    Article  Google Scholar 

  30. Luan, K. et al. Spontaneous directional self‐cleaning on the feathers of the aquatic bird Anser cygnoides domesticus induced by a transient superhydrophilicity. Adv. Funct. Mater. 31, 2010634 (2021).

    Article  CAS  Google Scholar 

  31. Tang, Z. et al. Bioinspired robust water repellency in high humidity by micro-meter-scaled conical fibers: toward a long-time underwater aerobic reaction. J. Am. Chem. Soc. 144, 10950–10957 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Meng, Q. et al. Controlling directional liquid transport on dual cylindrical fibers with oriented open‐wedges. Adv. Mater. Interfaces 9, 2101749 (2022).

    Article  CAS  Google Scholar 

  33. Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Nunes, J. K. et al. Fabricating shaped microfibers with inertial microfluidics. Adv. Mater. 26, 3712–3717 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Shang, L. et al. Spinning and applications of bioinspired fiber systems. ACS Nano 13, 2749–2772 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Tian, Y. et al. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 8, 1080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li, J., Li, J., Sun, J., Feng, S. & Wang, Z. Biological and engineered topological droplet rectifiers. Adv. Mater. 31, 1806501 (2019).

    Article  Google Scholar 

  38. Liu, M. et al. Inhibiting random droplet motion on hot surfaces by engineering symmetry‐breaking Janus‐mushroom structure. Adv. Mater. 32, 1907999 (2020).

    Article  CAS  Google Scholar 

  39. Zhang, C. et al. Bioinspired anisotropic slippery cilia for stiffness-controllable bubble transport. ACS Nano 16, 9348–9358 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, S. et al. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl Acad. Sci. USA 117, 11240–11246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oh, I. et al. Dynamically actuated liquid‐infused poroelastic film with precise control over droplet dynamics. Adv. Funct. Mater. 28, 1802632 (2018).

    Article  Google Scholar 

  42. Xu, B. et al. Electrochemical on‐site switching of the directional liquid transport on a conical fiber. Adv. Mater. 34, 2200759 (2022).

    Article  CAS  Google Scholar 

  43. Li, C. et al. Bioinspired inner microstructured tube controlled capillary rise. Proc. Natl Acad. Sci. USA 116, 12704–12709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, J. et al. Nature-inspired reentrant surfaces. Prog. Mater Sci. 133, 101064 (2023).

    Article  Google Scholar 

  45. Yu, Y. et al. Simple spinning of heterogeneous hollow microfibers on chip. Adv. Mater. 28, 6649–6655 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Du, X. Y., Li, Q., Wu, G. & Chen, S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv. Mater. 31, 1903733 (2019).

    Article  CAS  Google Scholar 

  47. Paulsen, K. S., Di Carlo, D. & Chung, A. J. Optofluidic fabrication for 3D-shaped particles. Nat. Commun. 6, 6976 (2015).

    Article  PubMed  Google Scholar 

  48. Amini, H. et al. Engineering fluid flow using sequenced microstructures. Nat. Commun. 4, 1826 (2013).

    Article  PubMed  Google Scholar 

  49. Chao, Y. & Shum, H. C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem. Soc. Rev. 49, 114–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Mak, S. Y., Li, Z., Frere, A., Chan, T. C. & Shum, H. C. Musical interfaces: visualization and reconstruction of music with a microfluidic two-phase flow. Sci. Rep. 4, 6675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sauret, A. & Shum, H. C. Beating the jetting regime. Int. J. Nonlinear Sci. Numer. Simul. 13, 351–362 (2012).

    Article  Google Scholar 

  52. Weislogel, M. M. & Lichter, S. Capillary flow in an interior corner. J. Fluid Mech. 373, 349–378 (1998).

    Article  Google Scholar 

  53. Weislogel, M. M. Compound capillary rise. J. Fluid Mech. 709, 622–647 (2012).

    Article  Google Scholar 

  54. Wang, K., Sanaei, P., Zhang, J. & Ristroph, L. Open capillary siphons. J. Fluid Mech. 932, R1 (2022).

    Article  CAS  Google Scholar 

  55. Liu, Y. et al. Bionic jaw-like micro one-way valve for rapid and long-distance water droplet unidirectional spreading. Nano Lett. 23, 5696–5704 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Washburn, E. W. The dynamics of capillary flow. Phy. Rev. 17, 273–283 (1921).

    Article  Google Scholar 

  57. Courbin, L., Bird, J. C., Reyssat, M. & Stone, H. A. Dynamics of wetting: from inertial spreading to viscous imbibition. J. Phys. Condens. Matter 21, 464127 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, L. et al. Bioinspired unidirectional liquid transport micro-nano structures: a review. J. Bionic Eng. 18, 1–29 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with grants T2225003 (Y.Z.), 22202050 (C.Y.), 32271383 (L.S.) and 52073060 (Y.Z.), and the National Key Research and Development Program of China with grant 2020YFA0908200 (Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and L.S. conceived the idea. C.Y. designed the experiments. C.Y. and Y.Y. conducted the experiments. C.Y. and L.S. analyzed the data. C.Y., L.S. and Y.Z. wrote the paper.

Corresponding authors

Correspondence to Luoran Shang or Yuanjin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Huan Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–21 and Discussion.

Supplementary Video 1

Jet dynamics under piezoelectric vibration.

Supplementary Video 2

Computational fluid dynamics simulation of the hemline-shaped jet dynamics.

Supplementary Video 3

Liquid transport behavior along a hemline-shaped and straight fiber.

Supplementary Video 4

High-speed digital images of the pinning and spreading behavior on a hydrophilic substrate.

Supplementary Video 5

Applications of hemline-shaped fibers.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Yu, Y., Shang, L. et al. Flexible hemline-shaped microfibers for liquid transport. Nat Chem Eng 1, 87–96 (2024). https://doi.org/10.1038/s44286-023-00001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-023-00001-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing