Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast ammonia decomposition using an electrified tungsten wire lightbulb reactor

Abstract

Ammonia decomposition is a key reaction in the green hydrogen economy because ammonia is an important carbon-free hydrogen carrier. In contrast to the prevalent focus on developing active catalysts to address the reaction’s slow kinetics at low temperatures, we introduce a tungsten wire lightbulb reactor that operates at unconventionally locally high temperatures while maintaining enhanced efficiency. Near the wire, the local temperature reaches up to 1,800 K, enabling ultrafast ammonia decomposition with rate constants much higher than those of leading catalysts under typical reaction conditions. Concurrently, the sharp temperature decrease along the radial direction allows for low power input, thus enhancing energy efficiency. The lightbulb reactor also realized up to 99.995% conversion at enhanced power input without the use of additional separation steps. We further propose a scaled-up reactor design that is two to three orders of magnitude smaller than current state-of-the-art reactors and highlight its potential applications within the emerging hydrogen economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the TWL reactor concept.
Fig. 2: Experimental performance of a laboratory-scale TWL reactor.
Fig. 3: Heat and mass transport in the laboratory-scale TWL reactor based on modeling.
Fig. 4: Reducing convective and radiative heat loss in the laboratory-scale reactor.
Fig. 5: Proposed scaled-up applications of the TWL reactor.
Fig. 6: Energy balance of the TWL reactor at different conditions and scales.

Similar content being viewed by others

Data availability

All data supporting this investigation are available in the article and its Supplementary Information. Source data are provided with this manuscript.

References

  1. Ilic, O. et al. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 11, 320–324 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Katebah, M., Al-Rawashdeh, M. M. & Linke, P. Analysis of hydrogen production costs in steam-methane reforming considering integration with electrolysis and CO2 capture. Clean. Eng. Technol. 10, 100552 (2022).

    Article  Google Scholar 

  3. Net Zero by 2050 (IEA, 2021).

  4. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  5. Indriadi, K. S., Du, Y., He, Q. & Yan, N. Critical downstream catalytic processes for an NH3 economy. Appl. Energy 393, 126099 (2025).

    Article  CAS  Google Scholar 

  6. Devkota, S. et al. Techno-economic and environmental assessment of hydrogen production through ammonia decomposition. Appl. Energy 358, 122605 (2024).

    Article  CAS  Google Scholar 

  7. Ojelade, O. A. & Zaman, S. F. Ammonia decomposition for hydrogen production: a thermodynamic study. Chem. Pap. 75, 57–65 (2021).

    Article  CAS  Google Scholar 

  8. Petrucci, R. H., Herring, F. G., Bissonnette, C. & Madura, J. General Chemistry: Principles and Modern Applications 9th edn, (Pearson Education, 2007).

  9. Lucentini, I., Garcia, X., Vendrell, X. & Llorca, J. Review of the decomposition of ammonia to generate hydrogen. Ind. Eng. Chem. Res. 60, 18560–18611 (2021).

    Article  CAS  Google Scholar 

  10. Davison, T. & Ashcroft, J. Making and breaking NH3: ammonia and its place in the low carbon economy. In Nitrogen + Syngas Conference (Johnson Mathey, 2022).

  11. Makhloufi, C. & Kezibri, N. Large-scale decomposition of green ammonia for pure hydrogen production. Int. J. Hydrog. Energy 46, 34777–34787 (2021).

    Article  CAS  Google Scholar 

  12. Devkota, S. et al. Process design and optimization of onsite hydrogen production from ammonia: reactor design, energy saving and NOX control. Fuel 342, 127879 (2023).

    Article  CAS  Google Scholar 

  13. Thomas, G. & Parks, G. Potential Roles of Ammonia in a Hydrogen Economy (US Department of Energy, 2007).

  14. Zheng, C. et al. Research status, optimization strategies, and future prospects of ammonia decomposition catalysts for COx-free hydrogen. Ind. Eng. Chem. Res. 62, 11305–11336 (2023).

    Article  CAS  Google Scholar 

  15. Chen, C. et al. Ru-based catalysts for ammonia decomposition: a mini-review. Energy Fuels 35, 11693–11706 (2021).

    Article  CAS  Google Scholar 

  16. Fang, H. et al. Challenges and opportunities of Ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catal. 12, 3938–3954 (2022).

    Article  CAS  Google Scholar 

  17. Huang, C. et al. Ru/La2O3 catalyst for ammonia decomposition to hydrogen. Appl. Surf. Sci. 476, 928–936 (2019).

    Article  CAS  Google Scholar 

  18. Chang, F., Gao, W., Guo, J. & Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 33, 2005721 (2021).

    Article  CAS  Google Scholar 

  19. Tabassum, H. et al. Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy Environ. Sci. 15, 4190–4200 (2022).

    Article  CAS  Google Scholar 

  20. Boardman, R. D., McKellar, M. G., Bryan, H. C., Foss, A. W. & Dold, B. D. Process Heat for Chemical Industry (Idaho National Laboratory, 2023).

  21. Rostrup-Nielsen, J. R. Steam reforming and chemical recuperation. Catal. Today 145, 72–75 (2009).

    Article  CAS  Google Scholar 

  22. Kolios, G., Glöckler, B., Gritsch, A., Morillo, A. & Eigenberger, G. Heat-integrated reactor concepts for hydrogen production by methane steam reforming. Fuel Cells 5, 52–65 (2005).

    Article  CAS  Google Scholar 

  23. Chen, W. et al. Battery metal recycling by flash Joule heating. Sci. Adv. 9, eadh5131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong, Q. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 605, 470–476 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, Q. et al. Grave-to-cradle dry reforming of plastics via Joule heating. Nat. Commun. 15, 8243 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shindo, H., Egawa, C., Onishi, T. & Tamaru, K. Reaction mechanism of ammonia decomposition on tungsten. J. Chem. Soc. Faraday Trans. 1 F 76, 280–290 (1980).

    Article  CAS  Google Scholar 

  28. Cechetto, V., Di Felice, L. & Gallucci, F. Advances and perspectives of H2 production from NH3 decomposition in membrane reactors. Energy Fuels 37, 10775–10798 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan, Y. et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378, 889–893 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Badakhsh, A. et al. A compact catalytic foam reactor for decomposition of ammonia by the Joule-heating mechanism. Chem. Eng. J. 426, 130802 (2021).

    Article  CAS  Google Scholar 

  31. Lim, S.-R., Kang, D., Ogunseitan, O. A. & Schoenung, J. M. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. Environ. Sci. Technol. 47, 1040–1047 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Podila, S. et al. Development of high surface area bulk W2N catalysts for hydrogen production from ammonia decomposition. Int. J. Hydrog. Energy 45, 16219–16226 (2020).

    Article  CAS  Google Scholar 

  33. Fang, H. et al. Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition. Nat. Commun. 14, 647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ogasawara, K. et al. Ammonia decomposition over water-durable hexagonal BaTiO3−xNy-supported Ni catalysts. Adv. Energy Mater. 13, 2301286 (2023).

    Article  CAS  Google Scholar 

  36. Abbas, S. Z., Dupont, V. & Mahmud, T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int. J. Hydrog. Energy 42, 2889–2903 (2017).

    Article  CAS  Google Scholar 

  37. Kuroki, M., Ookawara, S. & Ogawa, K. A high-fidelity CFD model of methane steam reforming in a packed bed reactor. J. Chem. Eng. Jpn 42, s73–s78 (2009).

    Article  Google Scholar 

  38. Li, G., Kanezashi, M., Yoshioka, T. & Tsuru, T. Ammonia decomposition in catalytic membrane reactors: simulation and experimental studies. AlChE J. 59, 168–179 (2013).

    Article  CAS  Google Scholar 

  39. Yan, P. & Cheng, Y. Design and operational considerations of packed-bed membrane reactor for distributed hydrogen production by methane steam reforming. Int. J. Hydrog. Energy 47, 36493–36503 (2022).

    Article  CAS  Google Scholar 

  40. Wehinger, G. D. et al. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AlChE J. 62, 4436–4452 (2016).

    Article  CAS  Google Scholar 

  41. Nakamura, H. & Shindo, M. Effects of radiation heat loss on laminar premixed ammonia/air flames. Proc. Combust. Inst. 37, 1741–1748 (2019).

    Article  CAS  Google Scholar 

  42. Lee, E.-H., Yang, D.-Y. & Yang, W.-H. Numerical modeling and experimental validation of focused surface heating using near-infrared rays with an elliptical reflector. Int. J. Heat Mass Transfer 78, 240–250 (2014).

    Article  Google Scholar 

  43. Techno-Economic Evaluation of SMR Based Standalone (Merchant) Plant with CCS (IEA GHG, 2017).

  44. Yang, H. et al. Distributed electrified heating for efficient hydrogen production. Nat. Commun. 15, 3868 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonaquist, D. Analysis of CO2 Emissions, Reductions, and Capture for Large-Scale Hydrogen Production Plants (Praxair, 2010).

  46. Innovation Outlook: Renewable Ammonia (International Renewable Energy Agency and Ammonia Energy Association, 2022).

  47. Swearer, D. F., Knowles, N. R., Everitt, H. O. & Halas, N. J. Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. 4, 1505–1512 (2019).

    Article  CAS  Google Scholar 

  48. ISO 14687:2025 (ISO, 2025).

  49. Mei, B., Zhang, J., Shi, X., Xi, Z. & Li, Y. Enhancement of ammonia combustion with partial fuel cracking strategy: laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm. Combust. Flame 231, 111472 (2021).

    Article  CAS  Google Scholar 

  50. Yu, K., Wang, C., Zheng, W. & Vlachos, D. G. Dynamic electrification of dry reforming of methane with in situ catalyst regeneration. ACS Energy Lett. 8, 1050–1057 (2023).

    Article  CAS  Google Scholar 

  51. Kim, Y. T., Lee, J.-J. & Lee, J. Electricity-driven reactors that promote thermochemical catalytic reactions via joule and induction heating. Chem. Eng. J. 470, 144333 (2023).

    Article  CAS  Google Scholar 

  52. Wismann, S. T. et al. Electrified methane reforming: elucidating transient phenomena. Chem. Eng. J. 425, 131509 (2021).

    Article  CAS  Google Scholar 

  53. Mallapragada, D. S. et al. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule 7, 23–41 (2023).

    Article  CAS  Google Scholar 

  54. Dong, Q. et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 616, 488–494 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Zheng, L., Ambrosetti, M. & Tronconi, E. Joule-heated catalytic reactors toward decarbonization and process intensification: a review. ACS Eng. Au. 4, 4–21 (2024).

    Article  CAS  Google Scholar 

  56. Dong, Q., Hu, S. & Hu, L. Electrothermal synthesis of commodity chemicals. Nat. Chem. Eng. 1, 680–690 (2024).

    Article  Google Scholar 

  57. Shekunova, V. M., Aleksandrov, Y. A., Tsyganova, E. I. & Filofeev, S. V. Cracking of light hydrocarbons in the presence of electrically heated metal wires. Pet. Chem. 57, 446–451 (2017).

    Article  CAS  Google Scholar 

  58. Porsin, A. V., Kulikov, A. V., Amosov, Y. I., Rogozhnikov, V. N. & Noskov, A. S. Acetylene synthesis by methane pyrolysis on a tungsten wire. Theor. Found. Chem. Eng. 48, 397–403 (2014).

    Article  CAS  Google Scholar 

  59. Sun, Q., Tang, Y. & Gavalas, G. R. Methane pyrolysis in a hot filament reactor. Energy Fuels 14, 490–494 (2000).

    Article  CAS  Google Scholar 

  60. Sigaeva, S. S., Likholobov, V. A. & Tsyrul’nikov, P. G. Pyrolysis of methane on a heat-treated FeCrAl coil heated with electric current. Kinet. Catal. 54, 199–206 (2013).

    Article  CAS  Google Scholar 

  61. Osipov, A. R., Sidorchik, I. A., Borisov, V. A., Temerev, V. L. & Shlyapin, D. A. Conversions of ethane and ethylene with methane on a resistive fechral catalyst in the presence of hydrogen. Catal. Ind. 13, 258–262 (2021).

    Article  Google Scholar 

  62. Sigaeva, S. S., Temerev, V. L., Borisov, V. A. & Tsyrul’nikov, P. G. Pyrolysis of methane on fechral resistive catalyst with additions of hydrogen or oxygen to the reaction mixture. Catal. Ind. 7, 171–174 (2015).

    Article  Google Scholar 

  63. Cherif, A., Zarei, M., Lee, J.-S., Yoon, H.-J. & Lee, C.-J. Modeling and multi-objective optimization of electrified ammonia decomposition: improvement of performance and thermal behavior. Fuel 358, 130243 (2024).

    Article  CAS  Google Scholar 

  64. Balakotaiah, V. & Ratnakar, R. R. Modular reactors with electrical resistance heating for hydrocarbon cracking and other endothermic reactions. AIChE J. 68, e17542 (2022).

    Article  CAS  Google Scholar 

  65. Da Silva Miranda, B. M. & Anand, N. K. Convective heat transfer in a channel with porous baffles. Numer. Heat Transf. A 46, 425–452 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Singapore Low-Carbon Energy Research (LCER) Funding Initiative hosted under A*STAR for the financial support (award no. U2102d2005, to N.Y.) and the RIE2025 USS LCER Phase II Programme (award no. U2305D4002, to N.Y.). N.Y. acknowledges support from National Research Foundation (NRF) Singapore under its NRF Investigatorship (NRFI07-2021-0015).

Author information

Authors and Affiliations

Authors

Contributions

K.S.I. performed experiments, conducted simulations, analyzed data and wrote and revised the manuscript. S.S.W. performed experiments, conducted simulations, analyzed data and revised the manuscript. P.H. performed experiments, conducted density functional theory calculations, analyzed data and wrote the manuscript. S.W. performed experiments and analyzed data. D.X. analyzed data and revised the manuscript. N.Y. conceived and supervised the entire study and revised the manuscript. All authors have discussed the results and given approval to the final version of the manuscript.

Corresponding author

Correspondence to Ning Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Huajie Yin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Experimental Methods, Computational Methods, Texts 1–6, Figs. 1–36 and Tables 1–3.

Supplementary Video 1

Infrared Video: Stability of tungsten wire.

Supplementary Video 2

Infrared Video: Heating/cooling of tungsten wire.

Source data

Source Data Fig. 2.

Statistical source data.

Source Data Fig. 3.

Statistical source data.

Source Data Fig. 5.

Statistical source data.

Source Data Fig. 6.

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indriadi, K.S., Wong, S.S., Han, P. et al. Ultrafast ammonia decomposition using an electrified tungsten wire lightbulb reactor. Nat Chem Eng 2, 640–649 (2025). https://doi.org/10.1038/s44286-025-00283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00283-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing