Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synthetic cell-free pathway for biocatalytic upgrading of formate from electrochemically reduced CO2

Abstract

Electrochemical reduction of carbon dioxide (CO2) can produce important one-carbon (C1) feedstocks for sustainable biomanufacturing, such as formate. Unfortunately, natural formate assimilation pathways are inefficient and constrained to organisms that are difficult to engineer. Here we establish a synthetic reductive formate pathway (ReForm) in vitro. ReForm is a six-step pathway consisting of five engineered enzymes catalyzing nonnatural reactions to convert formate into the universal biological building block acetyl-CoA. We establish ReForm by selecting enzymes among 66 candidates from prokaryotic and eukaryotic origins. Through iterative cycles of engineering, we create and evaluate 3,173 sequence-defined enzyme mutants, tune cofactor concentrations and adjust enzyme loadings to increase pathway activity toward the model end product malate. We demonstrate that ReForm can accept diverse C1 substrates, including formaldehyde, methanol and formate produced from the electrochemical reduction of CO2. Our work expands the repertoire of synthetic C1 utilization pathways, with implications for synthetic biology and the development of a formate-based bioeconomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthetic reductive formate pathway.
Fig. 2: Engineering of a phosphoketolase into an acetyl-Pi synthase.
Fig. 3: Engineering distinct substrate-specific acyl-CoA reductases.
Fig. 4: Enzyme engineering campaigns for specific acyl-CoA reductases and an active acyl-CoA synthetase.
Fig. 5: Chemoenzymatic conversion of C1 substrates into acetyl-CoA.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information. Source data are provided with this paper. Atomic structures reported in this Article are deposited to the Protein Data Bank under accession codes 9CD3 and 9CD4. The cryo-EM data were deposited to the Electron Microscopy Data Bank under EMD-45461 and EMD-45462.

References

  1. Lee, H. et al. in IPCC, 2023: Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 35–155 (IPCC, 2023); https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf

  2. Global Energy Review 2025 (IEA, 2025); https://www.iea.org/reports/global-energy-review-2025

  3. Cai, W. et al. The 2024 China report of the Lancet Countdown on health and climate change: launching a new low-carbon, healthy journey. Lancet Public Heal. 9, e1070–e1088 (2024).

    Article  Google Scholar 

  4. Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596–1596 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Bar-Even, A., Noor, E., Flamholz, A. & Milo, R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta Bioenerg. 1827, 1039–1047 (2013).

    Article  CAS  Google Scholar 

  6. Yishai, O., Lindner, S. N., Cruz, J. G., de la, Tenenboim, H. & Bar-Even, A. The formate bio-economy.Curr. Opin. Chem. Biol. 35, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Bang, J. et al. Synthetic formatotrophs for one-carbon biorefinery. Adv. Sci. 8, 2100199 (2021).

    Article  CAS  Google Scholar 

  8. Li, L. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 12, 5223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crowther, G. J., Kosály, G. & Lidstrom, M. E. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J. Bacteriol. 190, 5057–5062 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Bang, J., Hwang, C. H., Ahn, J. H., Lee, J. A. & Lee, S. Y. Escherichia coli is engineered to grow on CO2 and formic acid. Nat. Microbiol. 5, 1459–1463 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Claassens, N. J. et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62, 30–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Bar-Even, A. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55, 3851–3863 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Bar-Even, A., Noor, E., Lewis, N. E. & Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. USA 107, 8889–8894 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwander, T., Borzyskowski, L. S. von, Burgener, S., Cortina, N. S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo, S. et al. Construction and modular implementation of the THETA cycle for synthetic CO2 fixation. Nat. Catal. 6, 1228–1240 (2023).

    Article  CAS  Google Scholar 

  17. Chou, A., Lee, S. H., Zhu, F., Clomburg, J. M. & Gonzalez, R. An orthogonal metabolic framework for one-carbon utilization. Nat. Metab. 3, 1385–1399 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat. Commun. 10, 1378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad. Sci. USA 112, 3704–3709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, J., Anderson, K., Yang, E., He, L. & Lidstrom, M. E. Enzyme engineering and in vivo testing of a formate reduction pathway. Synth. Biol. https://doi.org/10.1093/synbio/ysab020 (2021).

  21. Nattermann, M. et al. Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo. Nat. Commun. 14, 2682 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, G. et al. Synergistic metabolism of glucose and formate increases the yield of short-chain organic acids in Escherichia coli. ACS Synth. Biol. 11, 135–143 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    Article  CAS  Google Scholar 

  24. Sodium Malate Market Size By Grade (Pharmaceutical Grade, Food Grade, Industrial Grade), By Form (Powdered, Liquid, Granular), By Application (Food & Beverages, Pharmaceuticals, Personal Care & Cosmetics, Industrial Applications) & Forecast 2023–2032 (GMI, 2022); https://www.gminsights.com/industry-analysis/sodium-malate-market

  25. Chou, A., Clomburg, J. M., Qian, S. & Gonzalez, R. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat. Chem. Biol. 15, 900–906 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Nattermann, M. et al. Engineering a highly efficient carboligase for synthetic one-carbon metabolism. ACS Catal. https://doi.org/10.1021/acscatal.1c01237 (2021).

  27. Scheffen, M. et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat. Catal. 4, 105–115 (2021).

    Article  CAS  Google Scholar 

  28. Trudeau, D. L. et al. Design and in vitro realization of carbon-conserving photorespiration. Proc. Natl Acad. Sci. USA 115, 201812605 (2018).

    Article  Google Scholar 

  29. Zarzycki, J., Sutter, M., Cortina, N. S., Erb, T. J. & Kerfeld, C. A. In vitro characterization and concerted function of three core enzymes of a glycyl radical enzyme—associated bacterial microcompartment. Sci. Rep. 7, 42757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karim, A. S. et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 16, 912–919 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Hunt, A. C. et al. A rapid cell-free expression and screening platform for antibody discovery. Nat. Commun. 14, 3897 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Hunt, A. C. et al. Cell-free gene expression: methods and applications. Chem. Rev. 125, 91–149 (2025).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Y. et al. Construction of an artificial phosphoketolase pathway that efficiently catabolizes multiple carbon sources to acetyl-CoA. PLoS Biol. 21, e3002285 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35, 128–135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 9, 2927–2935 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J. & Liu, Y. Computational studies on the catalytic mechanism of phosphoketolase. Comput. Theor. Chem. 1025, 1–7 (2013).

    Article  CAS  Google Scholar 

  38. Landwehr, G. M. et al. Accelerated enzyme engineering by machine-learning guided cell-free expression. Nat. Commun. 16, 865 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D. & Escalante-Semerena, J. C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Marx, C. J., Laukel, M., Vorholt, J. A. & Lidstrom, M. E. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J. Bacteriol. 185, 7169–7175 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Mordhorst, S., Maurer, A., Popadić, D., Brech, J. & Andexer, J. N. A flexible polyphosphate-driven regeneration system for coenzyme A dependent catalysis. ChemCatChem 9, 4164–4168 (2017).

    Article  CAS  Google Scholar 

  43. Cai, T. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Diehl, C., Gerlinger, P. D., Paczia, N. & Erb, T. J. Synthetic anaplerotic modules for the direct synthesis of complex molecules from CO2. Nat. Chem. Biol. 19, 168–175 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Meng, X. et al. A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts. Nat. Commun. 16, 31 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sherkhanov, S. et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat. Commun. 11, 4292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Black, W. B. et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat. Chem. Biol. 16, 87–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Black, W. B. et al. Activation-free upgrading of carboxylic acids to aldehydes and alcohols. Preprint at bioRxiv https://doi.org/10.1101/2025.07.28.667276 (2025).

  49. Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Y. et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 19, 311–318 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Kay, J. E. & Jewett, M. C. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab. Eng. 32, 133–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl. Environ. Microb. 81, 2506–2514 (2015).

    Article  CAS  Google Scholar 

  53. Bassalo, M. C. et al. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth. Biol. 5, 561–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Kwon, Y.-C. & Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 5, 8663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jewett, M. C. & Swartz, J. R. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86, 19–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Jewett, M. C. & Swartz, J. R. Substrate replenishment extends protein synthesis with an in vitro translation system designed to mimic the cytoplasm. Biotechnol. Bioeng. 87, 465–471 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Suzuki, R. et al. Crystal structures of phosphoketolase thiamine diphosphate-dependent dehydration mechanism. J. Biol. Chem. 285, 34279–34287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catal. Today 288, 79–84 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Molecular graphics and analyses were performed with UCSF ChimeraX, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases. This work made use of the IMSERC MS facility at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), the State of Illinois and the International Institute for Nanotechnology (IIN). We thank Stanford University Cryo-EM center (cEMc) and particularly B. Singal for providing support for cryo-EM grid preparation, data collection, processing and structure determination pipeline. We thank F. ‘Ralph’ Tobias for his help in developing analytical methods for malate detection and K. Seki for his help in gathering intact protein MS data on the deacetylated acyl-CoA synthetases. We also thank J. W. Bogart for conversations regarding this work. Funding was provided by the Department of Energy (DE-SC0023278) (G.M.L., B.V., K.Z., I.M., A.G., R.L., C.T., E.H.S., A.S.K. and M.C.J.), NSF GRFP (G.M.L.) and Stanford University Cryo-electron Microscopy Center (cEMc) (B.S.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.S.K., B.V., G.M.L. and M.C.J. Methodology: B.V. and G.M.L. Investigation: A.G., C.T., G.M.L., I.M., K.Z. and R.L. Cryo-EM: B.S. Supervision: A.S.K., M.C.J. and E.H.S. Funding acquisition: A.S.K., M.C.J. and E.H.S. Writing: A.S.K., G.M.L. and M.C.J.

Corresponding authors

Correspondence to Ashty S. Karim or Michael C. Jewett.

Ethics declarations

Competing interests

G.M.L., B.V., A.S.K. and M.C.J. have filed an invention disclosure based on the work presented. M.C.J. has a financial interest in National Resilience, Gauntlet Bio, Pearl Bio, Inc., and Stemloop Inc. M.C.J.’s interests are reviewed and managed by Northwestern University and Stanford University in accordance with their competing interest policies. All other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Mattheos Koffas, Zaigao Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–39 and Tables 1–11.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landwehr, G.M., Vogeli, B., Tian, C. et al. A synthetic cell-free pathway for biocatalytic upgrading of formate from electrochemically reduced CO2. Nat Chem Eng 3, 57–69 (2026). https://doi.org/10.1038/s44286-025-00315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00315-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing