Table 1 Plasmonic photothermal cycles for the amplification of NAs
From: Plasmonic biosensors and actuators for integrated point-of-care diagnostics
Materials | Speed | Reaction volume | Light source | Absorption (nm) | Heating rate (°C/s) | Cooling rate (°C/s) | LOD | Target | Year |
|---|---|---|---|---|---|---|---|---|---|
Spherical gold nanoparticles (60 nm) | 10 min | 25–40 µL | 532 nm laser, 3 W | 532 nm | 7.62 | 3.33 | – | Human androgen receptor gene | 2012 (ref. 122) |
Gold nanorods (AR 6) | 1 h/48 cycles (96 °C, 60 °C, 78 °C) | – | 808 nm, 3.6 mW | 781 nm | – | – | – | – | 2013 (ref. 278) |
120 nm gold film | 5 min/30 cycles (55 °C, 95 °C) | 5 µL | 450 nm, 3.5 W | 450 nm | 12.79 | 6.6 with cooling fan | 0.1 ng/μL | λ-DNA | 2015 (ref. 279) |
10 nm and 120 nm gold films | 4 min/30 cycles (94 °C, 68 °C) | 1.3 μL | 447.5 nm, ≈20 W | 300–500 nm | 7.5 | 6.35 | 2 DNA cp/μL | c-MET cDNA | 2016 (ref. 126) |
Gold nanorods (AR 4.1) | 54 s/30 cycles | 10–25 μL | 808 nm, 2 W | 808 nm | 70 | 50 | 1–50 ng | DNA | 2017 (ref. 123) |
PEGylated and silica-coated gold bipyramid (PEG-Si-AuBPs) | 7.5 min/cycle | 10 μL | IR-LED, 8.5 W | 846 nm | 16.6 | 9.4 | 5 ng/μL–1 pg/μL | M13mp18 DNA | 2017 (ref. 280) |
Polycarbonate membranes - 5 nm Titanium - 80 nm gold film | 10 min/40 cycles (95 °C and 60 °C) | – | 447.5 nm, 890 mW | 447 nm | – | – | 103 CFU/mL | E. coli | 2019 (ref. 127) |
Glass nanopillar array (180 nm) with 10 nm Ag coating and 40 nm Au nanoislands (GNA@Ag/AuNIs) | – | 15 μL | white LED, 3–7.5 W | <500 nm | 9.3 | 12.4 | 0.1 ng/μL | cDNA | 2020 (ref. 127) |
6 nm magnetic core covered by a 12 nmgold shell | 42 °C (5 min), (40 cycles/6 min), signal detection steps (3 min) | 20 µL | 532 nm, 80 mW | 535 nm | 13.17 | 4.94 | 3.2 cp/μL | SARS-CoV-2 | 2020 (ref. 124) |
150 nm iron oxide–gold (Fe₃O₄@Au) core–shell magnetic nanoparticles | <5 min | 10 μL | 850 nm, 8.5 W | 850 nm | 7.69 | 5.89 | 90 aM naked eyes | λ-DNA | 2021 (ref. 120) |
Glass nanopillar array (180 nm) with 10 nm Ag coating and 40 nm Au nanoislands (GNA@Ag/AuNIs) | 3 min/40 cycles | 1 μL | White LED, ~2.8 W | 400–500 nm | 11.95 | 7.31 | 1.37 × 104 cp/μL | SARS-CoV-2 | 2021 (ref. 128) |
30.0 nm gold core–45.9 nm silver nanoshells | LAMP, ≈ 75 min | 50 µL | heat blocks | ≈530 nm | – | – | 10 cp/ reaction | SARS-CoV-2 | 2022 (ref. 281) |
Gold nanorods (AR ~ 4.5 nm) with 10 nm silica coating | 2 min/Reverse transcription (RT) (2 min), denaturation (95 °C/10s), <15 min/45 cycles (60 and 95 °C) | 20 µL | 3 IR- LEDs | ~850 nm | 6.7 | −4.7 with 12 V fan | 5.9 × 103 cp/μL | SARS-CoV-2 RNA | 2022 (ref. 119) |
N-heterocyclic carbene (NHC)-conjugated gold substrate | 8 min/40 cycles (60 to 95 °C) | – | Blue light | 450 nm | 8.75 | 17.5 | 843 cp | SARS-CoV-2 | 2023 (ref. 282) |
Polystyrene particles covered by zinc oxide and aluminum | LAMP, lysis (3 min),detection (10 min) | 130 nL | Ambient light | – | – | – | −5.3 cp/μL DNA | SARS-CoV-2, influenza A | 2023 (ref. 14) |
Nanoscale gold islands | Thermal lysis (3 min); RT–RPA (30 min); and hybridization on pGOLD (1 h) | 40 µL | 643 nm, 25 W | NIR | – | – | 10 cp/ reaction | SARS-CoV-2 S gene | 2023 (ref. 201) |
Glass nanopillar array (180 nm) with 10 nm Ag coating and 40 nm Au nanoislands (GNA@Ag/AuNIs) | 10 min (RT (210 s) and 400 s/40 cycles) | 2 μL | White LED, 168 mW/mm2 | High absorption in the visible spectrum | 18.85 | 8.89 | 10 cp/μL | SARS-CoV-2 RNA | 2023 (ref. 283) |
Plasmonic cavity membrane composed of gold nanorods with SiO₂ tips | 3 min/30 cycles (55–95 °C) | 1 nL | 785 nm, 3.8 W | NIR | 23.3 | – | 1 cp/μL | SARS-CoV-2 | 2024 (ref. 284) |
Metal–insulator–metal (TiN ring structure, SiO2 layer, a TiN film) | 6 min 30 s/30 cycles (65–95 °C) | 4 µL | 940 nm, 3.8 W | Broad absorption spectrum | 16.66 | 7.77 | – | λ-DNA | 2024 (ref. 135) |
80 nm gold film | RCA, 40 min | – | Pulsed 447.5 nm, 0.75 W | – | – | – | 103 CFU/ mL | β-lactamase-producing E. coli | 2024 (ref. 101) |