Table 4 The model concepts of sets, indices, parameters, and decision variables
Sets | |
I | Set of EBs |
L | Set of bus layovers |
Y | Set of years |
M | Set of months in a year |
K | Set of solar PV power generation scenarios |
T | Set of time slots (1 minute for each time slot in this study) |
Indices | |
i | Index of EBs |
l | Index of bus layovers |
y | Index of years |
m | Index of months in a year |
k | Index of solar PV power scenarios |
t | Index of time slots |
Parameters | |
\({{\rm{\lambda }}}_{{\rm{bes}}}\) | Unit price of BES (CNY/kWh) |
\({{\rm{\lambda }}}_{{\rm{pv}}}\) | Unit price of PV panel (CNY) |
\({{\rm{\lambda }}}_{{\rm{t}}}\) | Unit price of electricity purchased from grid in time slot t (CNY/kWh) |
\({{\rm{\beta }}}_{1}\) | Price factor for charger power (CNY10,000/kW) |
\({{\rm{\beta }}}_{0}\) | Price intercept for charger power (CNY10,000) |
\({{\rm{\delta }}}_{{\rm{grid}}}\) | Carbon emission cost of thermal power generation (CNY/kWh) |
\({{\rm{\delta }}}_{{\rm{pv}}}\) | Carbon emission cost of solar PV power generation (CNY/kWh) |
\({{\rm{\delta }}}_{{\rm{ev}}}\) | Service fee of providing charging infrastructure to EVs (CNY/kWh) |
\({{\rm{\delta }}}_{{\rm{sell}}}\) | Electricity sales price of solar PV (CNY/kWh) |
\({{\rm{\rho }}}_{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Probability of solar PV power generation scenario k in month m of year y occurring |
\({{\rm{Q}}}_{{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Output power of a single PV panel in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{e}}}_{{\rm{i}},{\rm{l}}}\) | Energy consumption of EB i during the trip right before the layover l (kWh) |
\({\rm{SO}}{{\rm{C}}}_{\min }\) | Minimum state of charge (SOC) of the batteries in EB and BES |
\({\rm{SO}}{{\rm{C}}}_{\max }\) | Maximum SOC of the batteries in EB and BES |
\({\rm{SO}}{{\rm{C}}}_{{\rm{ini}}}\) | The initial SOC of the batteries in EB and BES |
\({\rm{C}}\) | Power battery capacity of EB (kWh) |
\({\rm{du}}{{\rm{r}}}_{{\rm{i}},{\rm{l}}}\) | Duration of EB i during the layover l (h) |
\({{\rm{P}}}_{{\rm{ev}},{\rm{t}}}\) | Charging demand of EVs in time slot t |
\({\rm{\varepsilon }}\) | Charging and discharging efficiency of BES |
\({{\rm{P}}}_{\max }\) | Maximum charging and discharging power of BES (kW) |
\({{\rm{d}}}_{{\rm{m}}}\) | Number of days in month m |
\({{\rm{\mu }}}_{{\rm{PV}}}\) | Residual value rate of solar PV |
\({{\rm{r}}}_{{\rm{PV}}}\) | Annual PV module aging rate |
\({{\rm{r}}}_{{\rm{BES}}}\) | Annual capacity degradation rate of BES |
Variables | |
\({{\rm{C}}}_{{\rm{bes}}}\) | Capacity of BES at the bus depot (kWh) |
\({{\rm{N}}}_{{\rm{ch}}}\) | Number of chargers deployed at the bus depot |
\({{\rm{N}}}_{{\rm{pv}}}\) | Number of PV panels deployed at the bus depot |
\({{\rm{N}}}_{{\rm{ev}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Number of chargers occupied by EVs in time slot t under solar PV power generation scenario k in month m of year y |
\({{\rm{N}}}_{{\rm{bus}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Number of chargers occupied by EBs in time slot t under solar PV power generation scenario k in month m of year y |
\({\rm{SO}}{{\rm{C}}}_{{\rm{bef}},{\rm{i}},{\rm{l}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | SOC of EB i right before the layover l under solar PV power generation scenario k in month m of year y |
\({\rm{SO}}{{\rm{C}}}_{{\rm{aft}},{\rm{i}},{\rm{l}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | SOC of EB i right after the layover l under solar PV power generation scenario k in month m of year y |
\({\rm{P}}\) | Maximum charging power of deployed chargers at the bus depot (kW) |
\({{\rm{P}}}_{{\rm{i}},{\rm{l}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Charging power for EB i during the layover l under solar PV power generation scenario k in month m of year y (kW) |
\(\overline{{{\rm{P}}}_{{\rm{i}},{\rm{l}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}}\) | 1 if the \({{\rm{P}}}_{{\rm{i}},{\rm{l}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) is larger than zero, otherwise 0 |
\({{\rm{E}}}_{{\rm{bat}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Energy remaining in BES in time slot t under solar PV power generation scenario k in month m of year y (kWh) |
\({{\rm{P}}}_{{\rm{charge}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Charging power of BES in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{discharge}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Discharging power of BES in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{eb}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Charging power for all the EBs in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{ev}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Charging power for private EVs in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{grid}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Charging power for all the EBs from the grid in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{pv}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Output power of solar PV system in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{sell}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Power of solar PV energy sold to the grid in time slot t under solar PV power generation scenario k in month m of year y (kW) |
\({{\rm{P}}}_{{\rm{usepv}},{\rm{t}}}^{{\rm{y}},{\rm{m}},{\rm{k}}}\) | Power of solar PV energy used to charge vehicles in time slot t under solar PV power generation scenario k in month m of year y (kW) |