Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogens and planetary change

Abstract

Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions.

Key points

  • Human activities have created a planetary polycrisis that includes pandemics, climate change and the sixth mass extinction.

  • Climate change, land change, agriculture and wildlife use — the major threats to biodiversity — are also driving a global rise in infectious diseases.

  • Biodiversity loss is generally harmful to human health.

  • Interventions that target spillover interfaces for high-risk pathogens, such as avian influenza or coronaviruses, could prevent some future pandemics.

  • Even with these interventions, investments in health systems and pandemic preparedness will be an important part of living in the Anthropocene.

  • The world needs better real-time biosurveillance infrastructure to track pathogens across species and ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal trends and hotspots.
Fig. 2: Two perspectives on land use as a driver of biodiversity loss and disease emergence.
Fig. 3: Case studies in biodiversity–disease–driver relationships.
Fig. 4: Biodiversity science as biosurveillance.

Similar content being viewed by others

Data availability

No original data were generated during the course of this study, but all data required to reproduce the figures here can be found at: https://github.com/viralemergence/pnpc.

Code availability

All code developed in this study can be found at: https://github.com/viralemergence/pnpc. The minimal statistical analysis and all other data and plotting related analysis were conducted in R version 4.3.2 (2023-10-31) (R Core Team 2023) using the rstanarm package (R Core Team 2023; Goodrich et al. 2024). All other packages we used are referenced in the repository’s README file.

References

  1. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287, 443–449 (2000).

    Article  Google Scholar 

  2. Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    Article  Google Scholar 

  3. Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. Lond. B 367, 2864–2871 (2012).

    Article  Google Scholar 

  4. Meadows, A. J., Stephenson, N., Madhav, N. K. & Oppenheim, B. Historical trends demonstrate a pattern of increasingly frequent and severe spillover events of high-consequence zoonotic viruses. BMJ Glob. Health 8, e012026 (2023).

    Article  Google Scholar 

  5. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    Article  Google Scholar 

  6. Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022).

    Article  Google Scholar 

  7. Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

  8. Lawler, O. K. et al. The COVID-19 pandemic is intricately linked to biodiversity loss and ecosystem health. Lancet Planet. Health 5, e840–e850 (2021).

    Article  Google Scholar 

  9. Glidden, C. K. et al. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr. Biol. 31, R1342–R1361 (2021).

    Article  Google Scholar 

  10. Kock, R. A. & Caceres-Escobar, H. Situation Analysis on the Roles and Risks of Wildlife in the Emergence of Human Infectious Diseases (IUCN, 2022).

  11. Stephens, P. R. et al. The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol. Lett. 19, 1159–1171 (2016).

    Article  Google Scholar 

  12. Huang, S., Farrell, M. & Stephens, P. R. Infectious disease macroecology: parasite diversity and dynamics across the globe. Phil. Trans. R. Soc. Lond. B 376, 20200350 (2021).

    Article  Google Scholar 

  13. Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    Article  Google Scholar 

  14. Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. 250, 108596 (2020).

    Article  Google Scholar 

  15. Rubio‐Godoy, M. & de León, G. P. Equal rights for parasites: Windsor 1995, revisited after ecological parasitology has come of age. Biol. Conserv. https://doi.org/10.1016/j.biocon.2023.110174 (2023).

    Article  Google Scholar 

  16. Weinstein, S. B. & Kuris, A. M. Independent origins of parasitism in Animalia. Biol. Lett. 12, 20160324 (2016).

    Article  Google Scholar 

  17. Dolphin, K. & Quicke, D. L. J. Estimating the global species richness of an incompletely described taxon: an example using parasitoid wasps (Hymenoptera: Braconidae). Biol. J. Linn. Soc. Lond. 73, 279–286 (2008).

    Article  Google Scholar 

  18. Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).

    Article  Google Scholar 

  19. Dobson, A. P., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).

    Article  Google Scholar 

  20. Larsen, B. B., Miller, E. C., Rhodes, M. K. & Wiens, J. J. Inordinate fondness multiplied and redistributed: the number of species on Earth and the new pie of life. Q. Rev. Biol. 92, 229–265 (2017).

    Article  Google Scholar 

  21. Dallas, T. A. et al. Gauging support for macroecological patterns in helminth parasites. Glob. Ecol. Biogeogr. 27, 1437–1447 (2018).

    Article  Google Scholar 

  22. Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA. 117, 9423–9430 (2020).

    Article  Google Scholar 

  23. Geoghegan, J. L., Duchêne, S. & Holmes, E. C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 13, e1006215 (2017).

    Article  Google Scholar 

  24. Hoberg, E. P. & Brooks, D. R. A macroevolutionary mosaic: episodic host‐switching, geographical colonization and diversification in complex host–parasite systems. J. Biogeogr. 35, 1533–1550 (2008).

    Article  Google Scholar 

  25. Wallace, M. et al. Making sense of the virome in light of evolution and ecology. Preprint at EcoEvoRxiv https://doi.org/10.32942/X21K8T (2024).

  26. Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta‐analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).

    Article  Google Scholar 

  27. Poulin, R. & Jorge, F. The geography of parasite discovery across taxa and over time. Parasitology 146, 168–175 (2019).

    Article  Google Scholar 

  28. Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. Biol. Sci. 285, 20180072 (2018).

  29. Quicke, D. L. J. We know too little about parasitoid wasp distributions to draw any conclusions about latitudinal trends in species richness, body size and biology. PLoS ONE 7, e32101 (2012).

    Article  Google Scholar 

  30. Rosenberg, R., Johansson, M. A., Powers, A. M. & Miller, B. R. Search strategy has influenced the discovery rate of human viruses. Proc. Natl. Acad. Sci. USA 110, 13961–13964 (2013).

    Article  Google Scholar 

  31. Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biol. Lett. 18, 20210427 (2022).

    Article  Google Scholar 

  32. Lu, L. et al. Temporal dynamics, discovery, and emergence of human-transmissible RNA viruses. Mol. Biol. Evol. 41, msad272 (2024).

    Article  Google Scholar 

  33. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article  Google Scholar 

  34. Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. mBio 13, e0298521 (2022).

    Article  Google Scholar 

  35. Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).

    Article  Google Scholar 

  36. Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).

    Article  Google Scholar 

  37. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    Article  Google Scholar 

  38. Albery, G. F. et al. Urban-adapted mammal species have more known pathogens. Nat. Ecol. Evol. 6, 794–801 (2022).

    Article  Google Scholar 

  39. Zhou, P. et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl. Acad. Sci. USA 113, 2696–2701 (2016).

    Article  Google Scholar 

  40. Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L.-F. Lessons from the host defences of bats, a unique viral reservoir. Nature 589, 363–370 (2021).

    Article  Google Scholar 

  41. Brook, C. E., Rozins, C., Guth, S. & Boots, M. Reservoir host immunology and life history shape virulence evolution in zoonotic viruses. PLoS Biol. 21, e3002268 (2023).

    Article  Google Scholar 

  42. Guth, S. et al. Bats host the most virulent—but not the most dangerous—zoonotic viruses. Proc. Natl Acad. Sci. USA 119, e2113628119 (2022).

    Article  Google Scholar 

  43. Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Phil. Trans. R. Soc. Lond. B 374, 20190296 (2019).

    Article  Google Scholar 

  44. Walker, J. W., Han, B. A., Ott, I. M. & Drake, J. M. Transmissibility of emerging viral zoonoses. PLoS ONE 13, e0206926 (2018).

    Article  Google Scholar 

  45. Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).

    Article  Google Scholar 

  46. de Thoisy, B., Gräf, T., Mansur, D. S., Delfraro, A. & Dos Santos, C. N. D. The risk of virus emergence in South America: a subtle balance between increasingly favorable conditions and a protective environment. Annu. Rev. Virol. 11, 43–65 (2024).

    Article  Google Scholar 

  47. Brierley, L., Vonhof, M. J., Olival, K. J., Daszak, P. & Jones, K. E. Quantifying global drivers of zoonotic bat viruses: a process-based perspective. Am. Nat. 187, E53–E64 (2016).

    Article  Google Scholar 

  48. Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).

    Article  Google Scholar 

  49. Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe 3, e625–e637 (2022).

    Article  Google Scholar 

  50. Schulz, J. E. et al. Serological evidence for Henipa-like and Filo-like viruses in Trinidad bats. J. Infect. Dis. 221, S375–S382 (2020).

    Article  Google Scholar 

  51. Hernández, L. H. A. et al. First genomic evidence of a Henipa-like virus in Brazil. Viruses 14, 2167 (2022).

    Article  Google Scholar 

  52. Halsey, S. Defuse the dilution effect debate. Nat. Ecol. Evol. 3, 145–146 (2019).

    Article  Google Scholar 

  53. Halliday, F. W., Rohr, J. R. & Laine, A.-L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. 23, 1611–1622 (2020).

    Article  Google Scholar 

  54. Mahon, M. B. et al. A meta-analysis on global change drivers and the risk of infectious disease. Nature 629, 830–836 (2024).

    Article  Google Scholar 

  55. Huang, Z. Y. X., Yu, Y., VAN Langevelde, F. & DE Boer, W. F. Does the dilution effect generally occur in animal diseases? Parasitology 144, 823–826 (2017).

    Article  Google Scholar 

  56. Gallagher, S. J. et al. Healthy but smaller herds: predators reduce pathogen transmission in an amphibian assemblage. J. Anim. Ecol. 88, 1613–1624 (2019).

    Article  Google Scholar 

  57. Lopez, L. K. et al. A healthy but depleted herd: predators decrease prey disease and density. Ecology 104, e4063 (2023).

    Article  Google Scholar 

  58. Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. USA 109, 10942–10947 (2012).

    Article  Google Scholar 

  59. Johnson, P. T. J., Preston, D. L., Hoverman, J. T. & Richgels, K. L. D. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–233 (2013).

    Article  Google Scholar 

  60. Huang, Z. Y. X., VAN Langevelde, F., Estrada-Peña, A., Suzán, G. & DE Boer, W. F. The diversity–disease relationship: evidence for and criticisms of the dilution effect. Parasitology 143, 1075–1086 (2016).

    Article  Google Scholar 

  61. Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).

    Article  Google Scholar 

  62. Keesing, F. et al. Hosts as ecological traps for the vector of Lyme disease. Proc. Biol. Sci. 276, 3911–3919 (2009).

    Google Scholar 

  63. Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    Article  Google Scholar 

  64. Ecke, F. et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat. Commun. 13, 7532 (2022).

    Article  Google Scholar 

  65. Previtali, M. A. et al. Relationship between pace of life and immune responses in wild rodents. Oikos 121, 1483–1492 (2012).

    Article  Google Scholar 

  66. Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. 37, 117–129 (2021).

    Article  Google Scholar 

  67. Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).

    Article  Google Scholar 

  68. Farrell, M. J., Stephens, P. R., Berrang-Ford, L., Gittleman, J. L. & Davies, T. J. The path to host extinction can lead to loss of generalist parasites. J. Anim. Ecol. 84, 978–984 (2015).

    Article  Google Scholar 

  69. Esser, H. J., Herre, E. A., Kays, R., Liefting, Y. & Jansen, P. A. Local host–tick coextinction in neotropical forest fragments. Int. J. Parasitol. 49, 225–233 (2019).

    Article  Google Scholar 

  70. Sitko, J. & Heneberg, P. Systemic collapse of a host–parasite trematode network associated with wetland birds in Europe. Parasitol. Res. 119, 935–945 (2020).

    Article  Google Scholar 

  71. Wood, C. L. et al. A reconstruction of parasite burden reveals one century of climate-associated parasite decline. Proc. Natl. Acad. Sci. USA 120, e2211903120 (2023).

    Article  Google Scholar 

  72. Carlson, C. J. et al. Parasite biodiversity faces extinction and redistribution in a changing climate. Sci. Adv. 3, e1602422 (2017).

    Article  Google Scholar 

  73. Neely, W. J. et al. Host-associated helminth diversity and microbiome composition contribute to anti-pathogen defences in tropical frogs impacted by forest fragmentation. R. Soc. Open Sci. 11, 240530 (2024).

    Article  Google Scholar 

  74. Johnson, P. T. J., Preston, D. L., Hoverman, J. T. & LaFonte, B. E. Host and parasite diversity jointly control disease risk in complex communities. Proc. Natl. Acad. Sci. USA 110, 16916–16921 (2013).

    Article  Google Scholar 

  75. Ezenwa, V. O. & Jolles, A. E. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347, 175–177 (2015).

    Article  Google Scholar 

  76. Sweeny, A. R. et al. Experimental parasite community perturbation reveals associations between Sin Nombre virus and gastrointestinal nematodes in a rodent reservoir host. Biol. Lett. 16, 20200604 (2020).

    Article  Google Scholar 

  77. Dougherty, E. R. et al. Paradigms for parasite conservation. Conserv. Biol. 30, 724–733 (2016).

    Article  Google Scholar 

  78. Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol. 31, 149–159 (2015).

    Article  Google Scholar 

  79. Sanderson, C. E. & Alexander, K. A. Unchartered waters: climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 26, 4284–4301 (2020).

    Article  Google Scholar 

  80. Kock, R. A. et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci. Adv. 4, eaao2314 (2018).

    Article  Google Scholar 

  81. Fereidouni, S. et al. Mass die-off of saiga antelopes, Kazakhstan, 2015. Emerg. Infect. Dis. 25, 1169–1176 (2019).

    Article  Google Scholar 

  82. Pruvot, M. et al. Outbreak of peste des petits ruminants among critically endangered Mongolian saiga and other wild ungulates, Mongolia, 2016–2017. Emerg. Infect. Dis. 26, 51–62 (2020).

    Article  Google Scholar 

  83. De Castro, F. & Bolker, B. Mechanisms of disease‐induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Article  Google Scholar 

  84. Bonhoeffer, S., Lenski, R. E. & Ebert, D. The curse of the pharaoh: the evolution of virulence in pathogens with long living propagules. Proc. Biol. Sci. 263, 715–721 (1996).

    Article  Google Scholar 

  85. Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    Article  Google Scholar 

  86. Stegen, G. et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544, 353–356 (2017).

    Article  Google Scholar 

  87. Castro Monzon, F., Rödel, M.-O., Ruland, F., Parra-Olea, G. & Jeschke, J. M. Batrachochytrium salamandrivorans’ amphibian host species and invasion range. Ecohealth 19, 475–486 (2022).

    Article  Google Scholar 

  88. Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19, 196–210 (2021).

    Article  Google Scholar 

  89. Springborn, M. R., Weill, J. A., Lips, K. R., Ibáñez, R. & Ghosh, A. Amphibian collapses increased malaria incidence in Central America. Environ. Res. Lett. 17, 104012 (2022).

    Article  Google Scholar 

  90. Frank, E. G. The economic impacts of ecosystem disruptions: costs from substituting biological pest control. Science 385, eadg0344 (2024).

    Article  Google Scholar 

  91. Xie, R. et al. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 622, 810–817 (2023).

    Article  Google Scholar 

  92. Muñoz, G. et al. Stranding and mass mortality in Humboldt penguins (Spheniscus humboldti), associated to HPAIV H5N1 outbreak in Chile. Prev. Vet. Med. 227, 106206 (2024).

    Article  Google Scholar 

  93. Nerpel, A. et al. SARS-ANI: a global open access dataset of reported SARS-CoV-2 events in animals. Sci. Data 9, 438 (2022).

    Article  Google Scholar 

  94. Fagre, A. C. et al. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol. Lett. 25, 1534–1549 (2022).

    Article  Google Scholar 

  95. Weary, T. E. et al. Common cold viruses circulating in children threaten wild chimpanzees through asymptomatic adult carriers. Sci. Rep. 14, 10431 (2024).

    Article  Google Scholar 

  96. Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).

    Article  Google Scholar 

  97. Hopkins, S. R. et al. Editorial essay: protected areas and One Health. Park. Recreat. 30, 6–13 (2024).

    Google Scholar 

  98. Bernstein, A. S. et al. The costs and benefits of primary prevention of zoonotic pandemics. Sci. Adv. 8, eabl4183 (2022).

    Article  Google Scholar 

  99. Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).

    Article  Google Scholar 

  100. Vora, N. M. et al. Want to prevent pandemics? Stop spillovers. Nature 605, 419–422 (2022).

    Article  Google Scholar 

  101. Vora, N. M. et al. Interventions to reduce risk for pathogen spillover and early disease spread to prevent outbreaks, epidemics, and pandemics. Emerg. Infect. Dis. 29, 1–9 (2023).

    Article  Google Scholar 

  102. Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article  Google Scholar 

  103. IPBES. Summary for Policymakers of The Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  104. Plowright, R. K. et al. Land use-induced spillover: a call to action to safeguard environmental, animal, and human health. Lancet Planet. Health 5, e237–e245 (2021).

    Article  Google Scholar 

  105. Becker, D. J. et al. Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).

    Article  Google Scholar 

  106. Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).

    Article  Google Scholar 

  107. Gibb, R. et al. The anthropogenic fingerprint on emerging infectious diseases. Preprint at bioRxiv https://doi.org/10.1101/2024.05.22.24307684 (2024).

    Article  Google Scholar 

  108. Eskew, E. A. et al. Reservoir displacement by an invasive rodent reduces Lassa virus zoonotic spillover risk. Nat. Commun. 15, 3589 (2024).

    Article  Google Scholar 

  109. Skinner, E. B., Glidden, C. K., MacDonald, A. J. & Mordecai, E. A. Human footprint is associated with shifts in the assemblages of major vector-borne diseases. Nat. Sustain. 6, 652–661 (2023).

    Article  Google Scholar 

  110. Morand, S., McIntyre, K. M. & Baylis, M. Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect. Genet. Evol. 24, 76–81 (2014).

    Article  Google Scholar 

  111. Greenspoon, L. et al. The global biomass of wild mammals. Proc. Natl. Acad. Sci. USA 120, e2204892120 (2023).

    Article  Google Scholar 

  112. Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 14830 (2015).

    Article  Google Scholar 

  113. Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 110, 8399–8404 (2013).

    Article  Google Scholar 

  114. Hayek, M. N. The infectious disease trap of animal agriculture. Sci. Adv. 8, eadd6681 (2022).

    Article  Google Scholar 

  115. Jori, F., Hernandez-Jover, M., Magouras, I., Dürr, S. & Brookes, V. J. Wildlife–livestock interactions in animal production systems: what are the biosecurity and health implications? Animal Front. 11, 8–19 (2021).

    Article  Google Scholar 

  116. Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022).

    Article  Google Scholar 

  117. Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article  Google Scholar 

  118. Carlson, C. J., Carleton, T. A., Odoulami, R. C. & Trisos, C. H. The historical fingerprint and future impact of climate change on childhood malaria in Africa. Preprint at bioRxiv https://doi.org/10.1101/2023.07.16.23292713 (2023).

    Article  Google Scholar 

  119. Childs, M. L., Lyberger, K., Harris, M., Burke, M. & Mordecai, E. A. Climate warming is expanding dengue burden in the Americas and Asia. Preprint at medRxiv https://doi.org/10.1101/2024.01.08.24301015 (2024).

    Article  Google Scholar 

  120. Carlson, C. J., Bannon, E., Mendenhall, E., Newfield, T. & Bansal, S. Rapid range shifts in African Anopheles mosquitoes over the last century. Biol. Lett. 19, 20220365 (2023).

    Article  Google Scholar 

  121. Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).

    Article  Google Scholar 

  122. Eisen, R. J. & Eisen, L. Evaluation of the association between climate warming and the spread and proliferation of Ixodes scapularis in northern states in the eastern United States. Ticks Tick-borne Dis. 15, 102286 (2024).

    Article  Google Scholar 

  123. McCoy, K. D. et al. Climate change in the Arctic: testing the poleward expansion of ticks and tick-borne diseases. Glob. Change Biol. 29, 1729–1740 (2023).

    Article  Google Scholar 

  124. VanWormer, E. et al. Viral emergence in marine mammals in the North Pacific may be linked to Arctic sea ice reduction. Sci. Rep. 9, 15569 (2019).

    Article  Google Scholar 

  125. Morales-Castilla, I. et al. Forecasting parasite sharing under climate change. Phil. Trans. R. Soc. Lond. B 376, 20200360 (2021).

    Article  Google Scholar 

  126. Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).

    Article  Google Scholar 

  127. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  Google Scholar 

  128. Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).

    Article  Google Scholar 

  129. Worobey, M. et al. The Huanan seafood wholesale market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 377, 951–959 (2022).

    Article  Google Scholar 

  130. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article  Google Scholar 

  131. Wang, M. et al. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis. 11, 1860–1865 (2005).

    Article  Google Scholar 

  132. Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

    Article  Google Scholar 

  133. Hughes, L. J., Morton, O., Scheffers, B. R. & Edwards, D. P. The ecological drivers and consequences of wildlife trade. Biol. Rev. Camb. Phil. Soc. 98, 775–791 (2023).

    Article  Google Scholar 

  134. Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLoS ONE 15, e0237129 (2020).

    Article  Google Scholar 

  135. Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, vex012 (2017).

    Article  Google Scholar 

  136. He, W.-T. et al. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell 185, 1117–1129.e8 (2022).

    Article  Google Scholar 

  137. Brook, C. E. et al. Population trends for two Malagasy fruit bats. Biol. Conserv. 234, 165–171 (2019).

    Article  Google Scholar 

  138. Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open. Sci. 3, 160498 (2016).

    Article  Google Scholar 

  139. Roy, H. E. et al. (eds) Thematic Assessment Report on Invasive Alien Species and Their Control (IPBES Secretariat, 2023).

  140. Bryant, J. E., Holmes, E. C. & Barrett, A. D. T. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog. 3, e75 (2007).

    Article  Google Scholar 

  141. Mnzava, A., Monroe, A. C. & Okumu, F. Anopheles stephensi in Africa requires a more integrated response. Malar. J. 21, 156 (2022).

    Article  Google Scholar 

  142. Ryan, S. J. et al. Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensi. Malar. J. 22, 104 (2023).

    Article  Google Scholar 

  143. Rohr, J. R. et al. A planetary health innovation for disease, food and water challenges in Africa. Nature 619, 782–787 (2023).

    Article  Google Scholar 

  144. Weets, C. M. & Katz, R. Global approaches to tackling antimicrobial resistance: a comprehensive analysis of water, sanitation and hygiene policies. BMJ Glob. Health 9, e013855 (2024).

  145. Bürgmann, H. et al. Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiol. Ecol. 94, https://doi.org/10.1093/femsec/fiy101 (2018).

  146. Orozovic, G., Orozovic, K., Lennerstrand, J. & Olsen, B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS ONE 6, e16028 (2011).

    Article  Google Scholar 

  147. Rosi, E. J., Fick, J. B. & Han, B. A. Are animal disease reservoirs at risk of human antiviral exposure? Environ. Sci. Technol. Lett. 10, 439–445 (2023).

    Article  Google Scholar 

  148. Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).

    Article  Google Scholar 

  149. Couper, L. I., MacDonald, A. J. & Mordecai, E. A. Impact of prior and projected climate change on US Lyme disease incidence. Glob. Change Biol. 27, 738–754 (2021).

    Article  Google Scholar 

  150. Plowright, R. K. et al. Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc. Biol. Sci. 278, 3703–3712 (2011).

    Google Scholar 

  151. Becker, D. J., Eby, P., Madden, W., Peel, A. J. & Plowright, R. K. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol. Lett. 26, 23–36 (2023).

    Article  Google Scholar 

  152. Baranowski, K., Faust, C. L., Eby, P. & Bharti, N. Quantifying the impacts of Australian bushfires on native forests and gray-headed flying foxes. Glob. Ecol. Conserv. 27, e01566 (2021).

    Google Scholar 

  153. Mo, M. et al. Estimating flying-fox mortality associated with abandonments of pups and extreme heat events during the austral summer of 2019–20. Pac. Conserv. Biol. 28, 124–139 (2021).

    Article  Google Scholar 

  154. Plaza, P. I., Gamarra-Toledo, V., Euguí, J. R. & Lambertucci, S. A. Recent changes in patterns of mammal infection with highly pathogenic avian influenza A(H5N1) virus worldwide. Emerg. Infect. Dis. 30, 444–452 (2024).

    Article  Google Scholar 

  155. Guinat, C. et al. Bayesian phylodynamics reveals the transmission dynamics of avian influenza A(H7N9) virus at the human–live bird market interface in China. Proc. Natl Acad. Sci. USA 120, e2215610120 (2023).

    Article  Google Scholar 

  156. Offeddu, V., Cowling, B. J. & Peiris, J. S. M. Interventions in live poultry markets for the control of avian influenza: a systematic review. One Health 2, 55–64 (2016).

    Article  Google Scholar 

  157. Yin, S. et al. Habitat loss exacerbates pathogen spread: an agent-based model of avian influenza infection in migratory waterfowl. PLoS Comput. Biol. 18, e1009577 (2022).

    Article  Google Scholar 

  158. Vandegrift, K. J., Sokolow, S. H., Daszak, P. & Kilpatrick, A. M. Ecology of avian influenza viruses in a changing world. Ann. NY Acad. Sci. 1195, 113–128 (2010).

    Article  Google Scholar 

  159. Prosser, D. J., Teitelbaum, C. S., Yin, S., Hill, N. J. & Xiao, X. Climate change impacts on bird migration and highly pathogenic avian influenza. Nat. Microbiol. 8, 2223–2225 (2023).

    Article  Google Scholar 

  160. Crits-Christoph, A. et al. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. Cell 187, 5468–5482.e11 (2024).

    Article  Google Scholar 

  161. Pekar, J. E. et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 377, 960–966 (2022).

    Article  Google Scholar 

  162. Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    Article  Google Scholar 

  163. Lednicky, J. A. et al. Independent infections of porcine deltacoronavirus among Haitian children. Nature 600, 133–137 (2021).

    Article  Google Scholar 

  164. Vlasova, A. N. et al. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. Clin. Infect. Dis. 74, 446–454 (2022).

    Article  Google Scholar 

  165. Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).

    Article  Google Scholar 

  166. Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total. Environ. 767, 145413 (2021).

    Article  Google Scholar 

  167. Warmuth, V. M., Metzler, D. & Zamora-Gutierrez, V. Human disturbance increases coronavirus prevalence in bats. Sci. Adv. 9, eadd0688 (2023).

    Article  Google Scholar 

  168. Meyer, M. et al. Bat species assemblage predicts coronavirus prevalence. Nat. Commun. 15, 2887 (2024).

    Article  Google Scholar 

  169. Busch, J. & Engelmann, J. Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050. Environ. Res. Lett. 13, 015001 (2017).

    Article  Google Scholar 

  170. Jones, I. J. et al. Improving rural health care reduces illegal logging and conserves carbon in a tropical forest. Proc. Natl. Acad. Sci. USA 117, 28515–28524 (2020).

    Article  Google Scholar 

  171. Rockström, J. et al. The planetary commons: a new paradigm for safeguarding Earth-regulating systems in the anthropocene. Proc. Natl. Acad. Sci. USA 121, e2301531121 (2024).

    Article  Google Scholar 

  172. Kashwan, P., Biermann, F., Gupta, A. & Okereke, C. Planetary justice: prioritizing the poor in earth system governance. Earth Syst. Gov. 6, 100075 (2020).

    Article  Google Scholar 

  173. Albery, G. F. et al. The science of the host–virus network. Nat. Microbiol. 6, 1483–1492 (2021).

    Article  Google Scholar 

  174. Tseng, K. K. et al. Viral genomic features predict orthopoxvirus reservoir hosts. Preprint at bioRxiv https://doi.org/10.1101/2023.10.26.564211 (2023).

    Article  Google Scholar 

  175. Fischhoff, I. R., Castellanos, A. A., Rodrigues, J. P. G. L. M., Varsani, A. & Han, B. A. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc. R. Soc. B 288, 20211651 (2021).

    Article  Google Scholar 

  176. Betke, B. A., Gottdenker, N. L., Meyers, L. A. & Becker, D. J. Ecological and evolutionary characteristics of anthropogenic roosting ability in bats of the world. iScience 27, 110369 (2024).

    Article  Google Scholar 

  177. Pruvot, M. et al. WildHealthNet: supporting the development of sustainable wildlife health surveillance networks in Southeast Asia. Sci. Total. Environ. 863, 160748 (2023).

    Article  Google Scholar 

  178. Stevens, T. et al. A minimum data standard for wildlife disease studies. Preprint at EcoEvoRxiv https://doi.org/10.32942/x2tw4j (2024).

    Article  Google Scholar 

  179. Richards, B. J., Miller, K. J. & White, C. L. WHISPers—Providing Situational Awareness of Wildlife Disease Threats to the Nation—A Fact Sheet for the Biosurveillance Community (USGS, 2022).

  180. Geoghegan, J. L. et al. Virological sampling of inaccessible wildlife with drones. Viruses 10, 300 (2018).

    Article  Google Scholar 

  181. Sievers, B. L. et al. Smart markets: harnessing the potential of new technologies for endemic and emerging infectious disease surveillance in traditional food markets. J. Virol. 98, e0168323 (2024).

    Article  Google Scholar 

  182. Wägele, J. W. et al. Towards a multisensor station for automated biodiversity monitoring. Basic. Appl. Ecol. 59, 105–138 (2022).

    Article  Google Scholar 

  183. Ärje, J. et al. Automatic image‐based identification and biomass estimation of invertebrates. Methods Ecol. Evol. 11, 922–931 (2020).

    Article  Google Scholar 

  184. Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).

    Article  Google Scholar 

  185. Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proc. Natl Acad. Sci. USA 118, e2018093118 (2021).

  186. Li, S. L. et al. Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLoS Negl. Trop. Dis. 16, e0010019 (2022).

    Article  Google Scholar 

  187. Gippet, J. M. W., Bates, O. K., Moulin, J. & Bertelsmeier, C. The global risk of infectious disease emergence from giant land snail invasion and pet trade. Parasit. Vectors 16, 363 (2023).

    Article  Google Scholar 

  188. Simons, D., Attfield, L. A., Jones, K. E., Watson-Jones, D. & Kock, R. Rodent trapping studies as an overlooked information source for understanding endemic and novel zoonotic spillover. PLoS Negl. Trop. Dis. 17, e0010772 (2023).

    Article  Google Scholar 

  189. Redding, D. W., Gibb, R. & Jones, K. E. Ecological impacts of climate change will transform public health priorities for zoonotic and vector-borne disease. Preprint at bioRxiv https://doi.org/10.1101/2024.02.09.24302575 (2024).

    Article  Google Scholar 

  190. García-Peña, G. E. et al. Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Phil. Trans. R. Soc. Lond. B 376, 20200362 (2021).

    Article  Google Scholar 

  191. Astorga, F. et al. Biodiversity data supports research on human infectious diseases: global trends, challenges, and opportunities. One Health 16, 100484 (2023).

    Article  Google Scholar 

  192. Edmunds, S. C. et al. Publishing data to support the fight against human vector-borne diseases. Gigascience 11, giac114 (2022).

  193. Shimabukuro, P. et al. Bridging biodiversity and health: the Global Biodiversity Information Facility’s initiative on open data on vectors of human diseases. GigaByte 2024, gigabyte117 (2024).

    Article  Google Scholar 

  194. Južnič-Zonta, Ž. et al. Mosquito Alert: leveraging citizen science to create a GBIF mosquito occurrence dataset. GigaByte 2022, gigabyte54 (2022).

    Google Scholar 

  195. Carney, R. M. et al. Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes. Insects 13, 675 (2022).

  196. Rund, S. S. C., Moise, I. K., Beier, J. C. & Martinez, M. E. Rescuing troves of hidden ecological data to tackle emerging mosquito-borne diseases. J. Am. Mosq. Control. Assoc. 35, 75–83 (2019).

  197. DiEuliis, D., Johnson, K. R., Morse, S. S. & Schindel, D. E. Specimen collections should have a much bigger role in infectious disease research and response. Proc. Natl. Acad. Sci. USA 113, 4–7 (2016).

    Article  Google Scholar 

  198. Thompson, C. W. et al. Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies. mBio 12, e02698-20 (2021).

  199. Colella, J. P. et al. Leveraging natural history biorepositories as a global, decentralized, pathogen surveillance network. PLoS Pathog. 17, e1009583 (2021).

    Article  Google Scholar 

  200. Wood, C. L. & Vanhove, M. P. M. Is the world wormier than it used to be? We’ll never know without natural history collections. J. Anim. Ecol. 92, 250–262 (2023).

    Article  Google Scholar 

  201. Bell, K. C., Carlson, C. J. & Phillips, A. J. Parasite collections: overlooked resources for integrative research and conservation. Trends Parasitol. 34, 637–639 (2018).

    Article  Google Scholar 

  202. Hämmerle, M. et al. Screening great ape museum specimens for DNA viruses. Sci. Rep. 14, 29806 (2024).

    Article  Google Scholar 

  203. Speer, K. A. et al. A comparative study of RNA yields from museum specimens, including an optimized protocol for extracting RNA from formalin-fixed specimens. Front. Ecol. Evol. 10, 953131 (2022).

  204. Martinez, S. et al. Living safely with bats: lessons in developing and sharing a global One Health educational resource. Glob. Health Sci. Pract. 10, e2200106 (2022).

  205. Amman, B. R. et al. Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg. Infect. Dis. 20, 1761–1764 (2014).

    Article  Google Scholar 

  206. Viana, M. et al. Effects of culling vampire bats on the spatial spread and spillover of rabies virus. Sci. Adv. 9, eadd7437 (2023).

    Article  Google Scholar 

  207. Jenkins, H. E. et al. Effects of culling on spatial associations of Mycobacterium bovis infections in badgers and cattle. J. Appl. Ecol. 44, 897–908 (2007).

    Article  Google Scholar 

  208. Hopkins, S. R. et al. Evidence gaps and diversity among potential win–win solutions for conservation and human infectious disease control. Lancet Planet. Health 6, e694–e705 (2022).

    Article  Google Scholar 

  209. Reaser, J. K., Witt, A., Tabor, G. M., Hudson, P. J. & Plowright, R. K. Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restor. Ecol. 29, e13357 (2021).

    Article  Google Scholar 

  210. Prist, P. R. et al. Promoting landscapes with a low zoonotic disease risk through forest restoration: the need for comprehensive guidelines. J. Appl. Ecol. 60, 1510–1521 (2023).

    Article  Google Scholar 

  211. Gallagher, M. R. et al. Can restoration of fire-dependent ecosystems reduce ticks and tick-borne disease prevalence in the eastern United States? Ecol. Appl. 32, e2637 (2022).

    Article  Google Scholar 

  212. Pattanayak, S. K., Kramer, R. A. & Vincent, J. R. Ecosystem change and human health: implementation economics and policy. Phil. Trans. R. Soc. Lond. B 372, 20160130 (2017).

  213. Hopkins, S. R. et al. How to identify win–win interventions that benefit human health and conservation. Nat. Sustain. 4, 298–304 (2020).

    Article  Google Scholar 

  214. Trisos, C. H. et al. Mosquito net fishing exemplifies conflict among Sustainable Development Goals. Nat. Sustain. 2, 5–7 (2019).

    Article  Google Scholar 

  215. Bonwitt, J. et al. Unintended consequences of the ‘bushmeat ban’ in West Africa during the 2013–2016 Ebola virus disease epidemic. Soc. Sci. Med. 200, 166–173 (2018).

    Article  Google Scholar 

  216. Li, Y. et al. Closure of live bird markets leads to the spread of H7N9 influenza in China. PLoS ONE 13, e0208884 (2018).

    Article  Google Scholar 

  217. Quammen, D. Spillover: Animal Infections and the Next Human Pandemic (W. W. Norton, 2012).

  218. Osofsky, S. A., Lieberman, S., Walzer, C., Lee, H. L. & Neme, L. A. An immediate way to lower pandemic risk: (not) seizing the low-hanging fruit (bat). Lancet Planet. Health 7, e518–e526 (2023).

    Article  Google Scholar 

  219. Dzingirai, V. et al. Structural drivers of vulnerability to zoonotic disease in Africa. Phil. Trans. R. Soc. Lond. B 372, 20160169 (2017).

  220. Magalhães, A. R. et al. Neglected tropical diseases risk correlates with poverty and early ecosystem destruction. Infect. Dis. Poverty 12, 32 (2023).

    Article  Google Scholar 

  221. Sokolow, S. H. et al. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens: a global analysis. Lancet Planet. Health 6, e870–e879 (2022).

    Article  Google Scholar 

  222. Farmer, P. Social inequalities and emerging infectious diseases. Emerg. Infect. Dis. 2, 259–269 (1996).

    Article  Google Scholar 

  223. Fiorella, K. J. et al. Human health alters the sustainability of fishing practices in east Africa. Proc. Natl. Acad. Sci. USA 114, 4171–4176 (2017).

    Article  Google Scholar 

  224. Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. Biol. Sci. 277, 1185–1192 (2010).

    Google Scholar 

  225. Worsley-Tonks, K. E. L. et al. Strengthening global health security by improving disease surveillance in remote rural areas of low-income and middle-income countries. Lancet Glob. Health 10, e579–e584 (2022).

    Article  Google Scholar 

  226. Wenham, C. et al. Global health security and universal health coverage: from a marriage of convenience to a strategic, effective partnership. BMJ Glob. Health 4, e001145 (2019).

    Article  Google Scholar 

  227. Moore, M. et al. Core components of infectious disease outbreak response. SSM - Health Syst. 3, 100030 (2024).

    Article  Google Scholar 

  228. Pike, J., Bogich, T., Elwood, S., Finnoff, D. C. & Daszak, P. Economic optimization of a global strategy to address the pandemic threat. Proc. Natl. Acad. Sci. USA 111, 18519–18523 (2014).

    Article  Google Scholar 

  229. Galaz, V. et al. Financial influence on global risks of zoonotic emerging and re-emerging diseases: an integrative analysis. Lancet Planet. Health 7, e951–e962 (2023).

    Article  Google Scholar 

  230. Hoffman, S. J. et al. International treaties have mostly failed to produce their intended effects. Proc. Natl. Acad. Sci. USA 119, e2122854119 (2022).

    Article  Google Scholar 

  231. Liew, J. H. et al. International socioeconomic inequality drives trade patterns in the global wildlife market. Sci. Adv. 7, eabf7679 (2021).

  232. Gallo-Cajiao, E. et al. Global governance for pandemic prevention and the wildlife trade. Lancet Planet. Health 7, e336–e345 (2023).

    Article  Google Scholar 

  233. Heckley, A. M., Lock, L. R. & Becker, D. J. A meta‐analysis exploring associations between habitat degradation and Neotropical bat virus prevalence and seroprevalence. Ecography 2024, e07041 (2024).

    Article  Google Scholar 

  234. Cohen, L. E., Fagre, A. C., Chen, B., Carlson, C. J. & Becker, D. J. Coronavirus sampling and surveillance in bats from 1996–2019: a systematic review and meta-analysis. Nat. Microbiol. 8, 1176–1186 (2023).

    Article  Google Scholar 

  235. Vicente-Santos, A. et al. Serum proteomics reveals a tolerant immune phenotype across multiple pathogen taxa in wild vampire bats. Front. Immunol. 14, 1281732 (2023).

    Article  Google Scholar 

  236. Albery, G. F., Sweeny, A. R., Becker, D. J. & Bansal, S. Fine‐scale spatial patterns of wildlife disease are common and understudied. Funct. Ecol. 36, 214–225 (2022).

    Article  Google Scholar 

  237. Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl. Acad. Sci. USA 112, 8667–8671 (2015).

    Article  Google Scholar 

  238. Di Bari, C. et al. The global burden of neglected zoonotic diseases: current state of evidence. One Health 17, 100595 (2023).

    Article  Google Scholar 

  239. Benavides, J. A. et al. Defining new pathways to manage the ongoing emergence of bat rabies in Latin America. Viruses 12, 1002 (2020).

  240. Standley, C. J., Fogarty, A. S., Miller, L. N. & Sorrell, E. M. One Health systems assessments for sustainable capacity strengthening to control priority zoonotic diseases within and between countries. Risk Manag. Healthc. Policy 16, 2497–2504 (2023).

    Article  Google Scholar 

  241. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article  Google Scholar 

  242. Van Kerkhove, M. D., Ryan, M. J. & Ghebreyesus, T. A. Preparing for ‘Disease X’. Science 374, 377 (2021).

    Article  Google Scholar 

  243. Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).

    Article  Google Scholar 

  244. Wolfe, N. D., Daszak, P., Kilpatrick, A. M. & Burke, D. S. Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerg. Infect. Dis. 11, 1822–1827 (2005).

    Article  Google Scholar 

  245. Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).

    Article  Google Scholar 

  246. Dai, L. et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 182, 722–733.e11 (2020).

    Article  Google Scholar 

  247. Nachbagauer, R. et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27, 106–114 (2021).

    Article  Google Scholar 

  248. Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. Bioscience 71, 1148–1156 (2021).

    Article  Google Scholar 

  249. Stephens, P. R. et al. Global Mammal Parasite Database version 2.0. Ecology 98, 1476 (2017).

    Article  Google Scholar 

  250. Bensch, S., Hellgren, O. & Pérez-Tris, J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353–1358 (2009).

    Article  Google Scholar 

  251. Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280, 20122753 (2013).

    Google Scholar 

  252. Heckley, A. M. & Becker, D. J. Tropical bat ectoparasitism in continuous versus fragmented forests: a gap analysis and preliminary meta-analysis. Ecol. Evol. 13, e9784 (2023).

    Article  Google Scholar 

  253. Murray, M. H. et al. City sicker? A meta‐analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).

    Article  Google Scholar 

  254. Fanelli, D. Negative results are disappearing from most disciplines and countries. Scientometrics 90, 891–904 (2012).

    Article  Google Scholar 

  255. Winands-Kalkuhl, S. & Holm-Müller, K. Bilateral vs. multilateral? On the economics and politics of a global mechanism for genetic resource use. J. Nat. Resour. Policy Res. 7, 305–322 (2015).

    Article  Google Scholar 

  256. Deplazes-Zemp, A. et al. The Nagoya protocol could backfire on the Global South. Nat. Ecol. Evol. 2, 917–919 (2018).

    Article  Google Scholar 

  257. Lajaunie, C. & Morand, S. Nagoya protocol and infectious diseases: hindrance or opportunity? Front. Public. Health 8, 238 (2020).

    Article  Google Scholar 

  258. Laird, S. et al. Rethink the expansion of access and benefit sharing. Science 367, 1200–1202 (2020).

    Article  Google Scholar 

  259. Richter, C. D. European Patent Office grants controversial patent protecting virus: lessons from the Middle East respiratory syndrome coronavirus outbreak. Nat. Biotechnol. 39, 287–290 (2021).

    Article  Google Scholar 

  260. Moore, S., Hill, E. M., Dyson, L., Tildesley, M. J. & Keeling, M. J. Retrospectively modeling the effects of increased global vaccine sharing on the COVID-19 pandemic. Nat. Med. 28, 2416–2423 (2022).

    Article  Google Scholar 

  261. Watson, O. J. et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect. Dis. 22, 1293–1302 (2022).

    Article  Google Scholar 

  262. Sedyaningsih, E. R., Isfandari, S., Soendoro, T. & Supari, S. F. Towards mutual trust, transparency and equity in virus sharing mechanism: the avian influenza case of Indonesia. Ann. Acad. Med. Singap. 37, 482–488 (2008).

    Article  Google Scholar 

  263. Carlson, C. J. et al. Save lives in the next pandemic: ensure vaccine equity now. Nature 626, 952–953 (2024).

    Article  Google Scholar 

  264. Carlson, C. et al. Engineering data equity: the LISTEN principles. Preprint at SSRN https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5022896 (2024).

Download references

Acknowledgements

The authors thank S. Hopkins, F. Keesing, R. Ostfeld, A. Phelan, Z. O’Donoghue, A. Sweeny, L. Damodaran and S. Seifert for helpful conversations and edits during the preparation of the manuscript. This work was supported by an National Science Foundation (NSF) Biology Integration Institute grant (DBI 2213854) to the Verena programme (viralemergence.org). C.J.C. was additionally supported by the NSF (SES 2314520).

Author information

Authors and Affiliations

Authors

Contributions

C.J.C., C.B.B., D.J.B., C.A.W. and T.P. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article, and edited the manuscript before submission.

Corresponding author

Correspondence to Colin J. Carlson.

Ethics declarations

Competing interests

C.J.C. has previously received funding support from the Coalition for Epidemic Preparedness Innovations; has been a consultant for the US Department of State on Global Health issues; and receives funding from the Carnegie Corporation of New York and the US National Science Foundation for research related to the Pandemic Agreement. D.J.B. is a member of the Lancet-PPATS Commission on Prevention of Viral Spillover. The authors declare no other competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GBIF: www.gbif.org

One Health High-Level Expert Panel: https://www.who.int/groups/one-health-high-level-expert-panel

One Health Joint Plan of Action (2022-2026): https://www.who.int/publications/i/item/9789240059139

PREDICT: https://data.usaid.gov/Global-Health-Security-in-Development-GHSD-/PREDICT-Emerging-Pandemic-Threats-Project/tqea-hwmr/about_data

The Pathogen Harmonized Observatory (PHAROS) database: www.pharos.viralemergence.org

Verena: www.viralemergence.org

Supplementary information

Glossary

Arbovirus

A shorthand for arthropod-borne (such as mosquito-borne or tick-borne) virus.

Emerging infectious disease

An infectious disease that has recently undergone an expansion of host range, geographic range, impact or even just attention from scientific research or public health; this term is subjective, and is frequently used interchangeably with the terms zoonotic, vector-borne and environmentally transmitted diseases.

Epidemic

An infectious disease outbreak in humans, with a significant duration, size or impact.

Epizootic

An infectious disease outbreak in non-human animals, with a significant duration, size or impact.

Host competence

The ability of a host to amplify and transmit infection to another susceptible host or vector.

Macroparasite

Parasites that can be observed with the naked eye, such as ticks, fleas and some worms; the term is sometimes used interchangeably with the term parasites.

Microparasite

Microscopic parasites such as bacteria, viruses and some worms (for example, schistosomes); the term is sometimes used interchangeably with the term pathogens.

One Health

A principle that emphasizes the connections between human health, animal health and the environment, as well as the importance of solutions that benefit all three.

Pandemic

A high-impact global outbreak of a human infectious disease. This term is subjective; some sources use the term to capture any global outbreak, and others limit their definition based on the degree of circulation or mortality (see Supplementary Note 3 for all criteria we use).

Panzootic

A high-impact global outbreak of an infectious disease of animals.

Parasite

An organism that exists in an adversarial symbiotic relationship with a host.

Parasitoid

An organism that must kill a host to complete its life cycle (for example, braconid wasps).

Pathogen

An infectious microorganism that causes disease in a host.

Reservoir

Competent hosts that sustain pathogen transmission at the population or community level.

Spillback

Human-to-animal pathogen transmission (also called reverse zoonosis).

Spillover

Animal-to-human pathogen transmission.

Synanthropic

Living alongside humans (for example, in cities or human-built structures).

Vector-borne disease

A disease caused by a pathogen that is transmitted by an arthropod vector, such as a mosquito, tick or flea.

Zoonotic disease

A human infectious disease caused by a pathogen of animal origin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, C.J., Brookson, C.B., Becker, D.J. et al. Pathogens and planetary change. Nat. Rev. Biodivers. 1, 32–49 (2025). https://doi.org/10.1038/s44358-024-00005-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-024-00005-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing