Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The importance of the plant mycorrhizal collaboration niche across scales

Abstract

Mycorrhiza is a symbiotic association between plant root and fungus, contributing to plant mineral nutrition and defence against antagonists. The mycorrhizal collaboration niche characterizes the position of plant species along a gradient of reliance on mycorrhiza. In this Perspective, we introduce the plant mycorrhizal traits that describe these niches and explore upscaling them to describe community-scale and macroecological-scale structure, including relationships with ecosystem function. Plant mycorrhizal type, status, dependency and root colonization rate characterize mycorrhizal niche optima, whereas flexibility and variation of root colonization rate, indicating the plasticity of plants in their reliance on mycorrhiza, describe mycorrhizal niche width. Abundance-weighted community means of plant mycorrhizal traits offer a way of upscaling trait information and examining mycorrhizal niche structure across communities and biomes. An illustrative analysis indicated that the share of highly mycorrhiza-reliant plant species decreases in biomes of more recent biogeographic origin at high latitudes. Arbuscular mycorrhizal plants become less prevalent, and those remaining tend to be flexible. The highest overall flexibility is observed in anthropogenic semi-natural grasslands, whereas, contrastingly, natural grasslands exhibit low overall mycorrhizal flexibility. Further advances in the field will be underpinned by the development of standardized approaches for measuring mycorrhizal traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plant mycorrhizal regulation scenarios.
Fig. 2: Mycorrhizal profiles of selected ecoregions.
Fig. 3: Innovations in plant mycorrhizal associations in conditions in which arbuscular mycorrhiza is inefficient.

Similar content being viewed by others

References

  1. Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).

    Google Scholar 

  2. Marro, N. et al. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. N. Phytol. 235, 320–332 (2022).

    CAS  Google Scholar 

  3. Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478 (2010).

    Google Scholar 

  4. Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).

    Google Scholar 

  5. Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? N. Phytol. 228, 828–838 (2020).

    Google Scholar 

  6. Fei, S. et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. N. Phytol. 234, 1960–1966 (2022).

    Google Scholar 

  7. Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).

    Google Scholar 

  8. Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Google Scholar 

  9. Magnoli, S. M. & Bever, J. D. Plant productivity response to inter- and intra-symbiont diversity: mechanisms, manifestations and meta-analyses. Ecol. Lett. 26, 1614–1628 (2023).

    Google Scholar 

  10. van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Google Scholar 

  11. Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    CAS  Google Scholar 

  12. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  13. Sportes, A. et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza 31, 637–653 (2021).

    Google Scholar 

  14. Johnson, N. C. & Graham, J. H. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363, 411–419 (2013).

    CAS  Google Scholar 

  15. Jacquemyn, H. & Merckx, V. S. F. T. Mycorrhizal symbioses and the evolution of trophic modes in plants. J. Ecol. 107, 1567–1581 (2019).

    Google Scholar 

  16. Ma, Z. Q. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94 (2018).

    CAS  Google Scholar 

  17. Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    CAS  Google Scholar 

  18. Romero, F., Argüello, A., de Bruin, S. & van der Heijden, M. G. A. The plant–mycorrhizal fungi collaboration gradient depends on plant functional group. Funct. Ecol. 37, 2386–2398 (2023).

    CAS  Google Scholar 

  19. Henn, J. J. et al. Long-term alpine plant responses to global change drivers depend on functional traits. Ecol. Lett. 27, e14518 (2024).

    Google Scholar 

  20. Davison, J. et al. Niche types and community assembly. Ecol. Lett. 27, e14327 (2024).

    Google Scholar 

  21. Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Google Scholar 

  22. Treurnicht, M. et al. Functional traits explain the Hutchinsonian niches of plant species. Glob. Ecol. Biogeogr. 29, 534–545 (2020).

    Google Scholar 

  23. Kermavnar, J., Kutnar, L., Marinšek, A. & Babij, V. Are ecological niche optimum and width of forest plant species related to their functional traits? Flora 301, 152247 (2023).

    Google Scholar 

  24. Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (John Wiley, 2001).

  25. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Google Scholar 

  26. Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    Google Scholar 

  27. Laliberté, E. Below-ground frontiers in trait-based plant ecology. N. Phytol. 213, 1597–1603 (2017).

    Google Scholar 

  28. Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).

    CAS  Google Scholar 

  29. Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. N. Phytol. 232, 42–59 (2021).

    Google Scholar 

  30. Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).

    CAS  Google Scholar 

  31. Wen, Z., White, P. J., Shen, J. & Lambers, H. Linking root exudation to belowground economic traits for resource acquisition. N. Phytol. 233, 1620–1635 (2022).

    CAS  Google Scholar 

  32. Chaudhary, V. B. et al. What are mycorrhizal traits? Trends Ecol. Evol. 37, 573–581 (2022).

    Google Scholar 

  33. Chagnon, P. L., Bradley, R. L., Maherali, H. & Klironomos, J. N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18, 484–491 (2013).

    CAS  Google Scholar 

  34. Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).

    Google Scholar 

  35. Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).

    Google Scholar 

  36. Moora, M. Mycorrhizal traits and plant communities: perspectives for integration. J. Veg. Sci. 25, 1126–1132 (2014).

    Google Scholar 

  37. Koide, R. T. & Schreiner, R. P. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 557–581 (1992).

    CAS  Google Scholar 

  38. Gerz, M., Bueno, C. G., Zobel, M. & Moora, M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J. Veg. Sci. 27, 89–99 (2016).

    Google Scholar 

  39. Grman, E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93, 711–718 (2012).

    Google Scholar 

  40. Smith, F. A. & Smith, S. E. How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. N. Phytol. 205, 1381–1384 (2015).

    Google Scholar 

  41. Wang, W. et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10, 1147–1158 (2017).

    CAS  Google Scholar 

  42. Cosme, M., Fernández, I., Van der Heijden, M. G. A. & Pieterse, C. M. J. Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci. 23, 577–587 (2018).

    CAS  Google Scholar 

  43. Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).

    CAS  Google Scholar 

  44. Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).

    Google Scholar 

  45. Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ. 36, 1191–1195 (2013).

    Google Scholar 

  46. Yi, R. et al. Complementary belowground strategies underlie species coexistence in an early successional forest. N. Phytol. 238, 612–623 (2023).

    Google Scholar 

  47. Bennett, A. E. & Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annu. Rev. Plant Biol. 73, 649–672 (2022).

    CAS  Google Scholar 

  48. Guo, L. et al. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol. Lett. 27, e14330 (2024).

    Google Scholar 

  49. Tedersoo, L. & Brundrett, M. C. Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stud. 230, 407–467 (2017).

    Google Scholar 

  50. Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).

    Google Scholar 

  51. Meng, Y. et al. Environmental modulation of plant mycorrhizal traits in the global flora. Ecol. Lett. 26, 1862–1876 (2023).

    Google Scholar 

  52. Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).

    CAS  Google Scholar 

  53. Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. N. Phytol. 217, 1213–1229 (2018).

    CAS  Google Scholar 

  54. Meeds, J. A. et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. 15, 1478–1489 (2021).

    CAS  Google Scholar 

  55. Cheeke, T. E., Zheng, C., Koziol, L., Gurholt, C. R. & Bever, J. D. Sensitivity to AMF species is greater in late-successional than early-successional native or nonnative grassland plants. Ecology 100, e02855 (2019).

    Google Scholar 

  56. Sikes, B. A., Powell, J. R. & Rillig, M. C. Deciphering the relative contributions of multiple functions within plant–microbe symbioses. Ecology 91, 1591–1597 (2010).

    Google Scholar 

  57. Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003).

    Google Scholar 

  58. Romero, F. et al. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci. Total Environ. 885, 163683 (2023).

    CAS  Google Scholar 

  59. Koziol, L. & Bever, J. D. Mycorrhizal response trades off with plant growth rate and increases with plant successional status. Ecology 96, 1768–1774 (2015).

    Google Scholar 

  60. Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).

    Google Scholar 

  61. Ramana, J. V., Tylianakis, J. M., Ridgway, H. J. & Dickie, I. A. Root diameter, host specificity and arbuscular mycorrhizal fungal community composition among native and exotic plant species. N. Phytol. 239, 301–310 (2023).

    Google Scholar 

  62. Zobel, M., Koorem, K., Moora, M., Semchenko, M. & Davison, J. Symbiont plasticity as a driver of plant success. N. Phytol. 241, 2340–2352 (2024).

    Google Scholar 

  63. Heklau, H., Schindler, N., Eisenhauer, N., Ferlian, O. & Bruelheide, H. Temporal variation of mycorrhization rates in a tree diversity experiment. Ecol. Evol. 13, e10002 (2023).

    Google Scholar 

  64. Schaefer, E. A., Gehring, C. A., Phillips, R. P., Gadrat, E. & Karst, J. Variation of root functional traits indicates flexible below-ground economic strategies of the riparian tree species Populus fremontii. Funct. Ecol. 38, 2003–2014 (2024).

    CAS  Google Scholar 

  65. Graham, J. H. & Eissenstat, D. M. Field evidence for the carbon cost of citrus mycorrhizas. N. Phytol. 140, 103–110 (1998).

    Google Scholar 

  66. Ma, X. et al. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Glob. Ecol. Biogeogr. 32, 1423–1434 (2023).

    Google Scholar 

  67. Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).

    Google Scholar 

  68. Li, M., Jordan, N. R., Koide, R. T., Yannarell, A. C. & Davis, A. S. Meta-analysis of crop and weed growth responses to arbuscular mycorrhizal fungi: implications for integrated weed management. Weed Sci. 64, 642–652 (2016).

    Google Scholar 

  69. Nouri, E. et al. Phosphate suppression of arbuscular mycorrhizal symbiosis involves gibberellic acid signaling. Plant Cell Physiol. 62, 959–970 (2021).

    CAS  Google Scholar 

  70. Guillen-Otero, T., Lee, S.-J., Hertel, D. & Kessler, M. Facultative mycorrhization in a fern (Struthiopteris spicant L. Weiss) is bound to light intensity. BMC Plant Biol. 24, 103 (2024).

    CAS  Google Scholar 

  71. Jarratt-Barnham, E., Zarrabian, D. & Oldroyd, G. E. D. Symbiotic regulation: how plants seek salvation in starvation. Curr. Biol. 32, R46–R48 (2022).

    CAS  Google Scholar 

  72. Shi, J. et al. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, 5527–5540.e18 (2021).

    CAS  Google Scholar 

  73. Borda, V., Reinhart, K. O., Ortega, M. G., Burni, M. & Urcelay, C. Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol. Invasions 24, 2757–2768 (2022).

    Google Scholar 

  74. Tian, B. et al. Gene expression controlling signalling molecules within mutualistic associations of an invasive plant: an evolutionary perspective. J. Ecol. 112, 1818–1831 (2024).

    CAS  Google Scholar 

  75. Soudzilovskaia, N. A. et al. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. N. Phytol. 208, 280–293 (2015).

    CAS  Google Scholar 

  76. Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).

    CAS  Google Scholar 

  77. Liang, S. et al. Positioning absorptive root respiration in the root economics space across woody and herbaceous species. J. Ecol. 111, 2710–2720 (2023).

    CAS  Google Scholar 

  78. Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. https://doi.org/10.1111/1365-2745.12429 (2015).

  79. Albornoz, F. E., Burgess, T. I., Lambers, H., Etchells, H. & Laliberté, E. Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrient-acquisition strategies. J. Ecol. 105, 549–557 (2017).

    Google Scholar 

  80. Becklin, K. M., Pallo, M. L. & Galen, C. Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100, 343–351 (2012).

    Google Scholar 

  81. Roche, M. D. et al. Negative effects of an allelopathic invader on AM fungal plant species drive community-level responses. Ecology 102, e03201 (2021).

    Google Scholar 

  82. Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).

    Google Scholar 

  83. Fernandez, N. et al. Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2022.873204 (2022).

  84. Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    CAS  Google Scholar 

  85. Kohout, P. Biogeography of ericoid mycorrhiza. Ecol. Stud. 230, 179–193 (2017).

    Google Scholar 

  86. Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–916 (1998).

    Google Scholar 

  87. Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    CAS  Google Scholar 

  88. Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).

    CAS  Google Scholar 

  89. Perotto, S., Daghino, S. & Martino, E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? N. Phytol. 220, 1141–1147 (2018).

    Google Scholar 

  90. Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T. & Gibson, D. J. Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J. Ecol. 81, 787–795 (1993).

    Google Scholar 

  91. Collier, F. A. & Bidartondo, M. I. Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J. Ecol. 97, 950–963 (2009).

    Google Scholar 

  92. Primieri, S., Magnoli, S. M., Koffel, T., Stürmer, S. L. & Bever, J. D. Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a meta-analysis. N. Phytol. 233, 505–514 (2022).

    CAS  Google Scholar 

  93. Zhou, Y. et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 32, 1168–1179 (2018).

    Google Scholar 

  94. Zhang, K., Zentella, R., Burkey, K. O., Liao, H.-L. & Tisdale, R. H. Long-term tropospheric ozone pollution disrupts plant–microbe–soil interactions in the agroecosystem. Glob. Change Biol. 30, e17215 (2024).

    CAS  Google Scholar 

  95. Puschel, D. et al. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00390 (2017).

  96. Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).

    Google Scholar 

  97. Frew, A. et al. Plant herbivore protection by arbuscular mycorrhizas: a role for fungal diversity? N. Phytol. 233, 1022–1031 (2022).

    Google Scholar 

  98. Frew, A. et al. Herbivory-driven shifts in arbuscular mycorrhizal fungal community assembly: increased fungal competition and plant phosphorus benefits. N. Phytol. 241, 1891–1899 (2024).

    CAS  Google Scholar 

  99. Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A. & Pozo, M. J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651–664 (2012).

    CAS  Google Scholar 

  100. Delavaux, C. S., Smith-Ramesh, L. M. & Kuebbing, S. E. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111–2119 (2017).

    Google Scholar 

  101. Marx, D. H. Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu. Rev. Phytopathol. 10, 429–454 (1972).

    CAS  Google Scholar 

  102. Laliberte, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N. Phytol. 206, 507–521 (2015).

    CAS  Google Scholar 

  103. Xing, Z. et al. Foliar herbivory-enhanced mycorrhization is associated with increased levels of lipids in root and root exudates. J. Ecol. 112, 701–716 (2024).

    CAS  Google Scholar 

  104. Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).

    CAS  Google Scholar 

  105. Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  106. Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).

    CAS  Google Scholar 

  107. Diekmann, M. Species indicator values as an important tool in applied plant ecology — a review. Basic Appl. Ecol. 4, 493–506 (2003).

    Google Scholar 

  108. Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Botany 99, 967–985 (2007).

    Google Scholar 

  109. Borgy, B. et al. Sensitivity of community-level trait–environment relationships to data representativeness: a test for functional biogeography. Glob. Ecol. Biogeogr. 26, 729–739 (2017).

    Google Scholar 

  110. Doledec, S., Chessel, D. & Gimaret-Carpentier, C. Niche separation in community analysis: a new method. Ecology 81, 2914–2927 (2000).

    Google Scholar 

  111. Peres-Neto, P. R., Dray, S. & ter Braak, C. J. F. Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40, 806–816 (2017).

    Google Scholar 

  112. Niku, J., Hui, F. K. C., Taskinen, S. & Warton, D. I. gllvm: fast analysis of multivariate abundance data with generalized linear latent variable models in R. Methods Ecol. Evol. 10, 2173–2182 (2019).

    Google Scholar 

  113. Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J. Veg. Sci. 31, 355–366 (2020).

    Google Scholar 

  114. Zobel, M. et al. Ancient environmental DNA reveals shifts in dominant mutualisms during the late Quaternary. Nat. Commun. 9, 139 (2018).

    Google Scholar 

  115. Maes, S. L. et al. Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biol. 22, 410–424 (2020).

    CAS  Google Scholar 

  116. Weiher, E. et al. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. B Biol. Sci. 366, 2403–2413 (2011).

    Google Scholar 

  117. Veresoglou, S. D., Xi, J. & Peñuelas, J. Mechanisms of coexistence: exploring species sorting and character displacement in woody plants to alleviate belowground competition. Ecol. Lett. 27, e14489 (2024).

    Google Scholar 

  118. Zhang, E. et al. Mycorrhizal symbiosis increases plant phylogenetic diversity and regulates community assembly in grasslands. Ecol. Lett. 27, e14516 (2024).

    Google Scholar 

  119. Barceló, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi. Sci. Data 10, 56 (2023).

    Google Scholar 

  120. Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    CAS  Google Scholar 

  121. Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    Google Scholar 

  122. Barceló, M., van Bodegom, P. M., Tedersoo, L., Olsson, P. A. & Soudzilovskaia, N. A. Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J. Ecol. 110, 1271–1282 (2022).

    Google Scholar 

  123. Hawkins, H.-J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).

    Google Scholar 

  124. Martin, F. M. & van der Heijden, M. G. A. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. N. Phytol. 242, 1486–1506 (2024).

    Google Scholar 

  125. Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Google Scholar 

  126. Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? N. Phytol. 157, 475–492 (2003).

    CAS  Google Scholar 

  127. Noreika, N. et al. Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos 128, 1653–1665 (2019).

    CAS  Google Scholar 

  128. Vasar, M. et al. Global soil microbiomes: a new frontline of biome-ecology research. Glob. Ecol. Biogeogr. 31, 1120–1132 (2022).

    Google Scholar 

  129. Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).

    Google Scholar 

  130. Kytoviita, M. M. Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol. Ecol. 53, 27–32 (2005).

    Google Scholar 

  131. Gerz, M., Bueno, C. G., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).

    CAS  Google Scholar 

  132. Poschlod, P. & WallisDeVries, M. F. The historical and socio-economic perspective of calcareous grasslands — lessons from the distant and recent past. Biol. Conserv. 104, 361–376 (2002).

    Google Scholar 

  133. Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe — a review. Grass Forage Sci. 68, 345–363 (2013).

    Google Scholar 

  134. Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023).

    Google Scholar 

  135. Lepik, M. et al. The nitrogen-fixing potential of plant communities depends on climate and land management. J. Biogeogr. 50, 591–601 (2023).

    Google Scholar 

  136. Strullu-Derrien, C., Selosse, M.-A., Kenrick, P. & Martin, F. M. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. N. Phytol. 220, 1012–1030 (2018).

    Google Scholar 

  137. Bredenkamp, G. J., Spada, F. & Kazmierczak, E. On the origin of northern and southern hemisphere grasslands. Plant Ecol. 163, 209–229 (2002).

    Google Scholar 

  138. Stromberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).

    CAS  Google Scholar 

  139. Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

    CAS  Google Scholar 

  140. Tichý, L. et al. Ellenberg-type indicator values for European vascular plant species. J. Veg. Sci. 34, e13168 (2023).

    Google Scholar 

  141. Lutz, S. et al. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat. Microbiol. 8, 2277–2289 (2023).

    CAS  Google Scholar 

  142. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Google Scholar 

  143. Sabatini, F. M. et al. sPlotOpen — an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).

    Google Scholar 

  144. Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Naturalist 188, E113–E125 (2016).

    Google Scholar 

  145. Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356, eabd4501 (2017).

    Google Scholar 

  146. Tedersoo, L. & Smith, M. E. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99 (2013).

    Google Scholar 

  147. Leopold, D. R. Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol. 24, 114–123 (2016).

    Google Scholar 

  148. Li, T., Yang, W., Wu, S., Selosse, M.-A. & Gao, J. Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12, 646325 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by the Estonian Ministry of Education and Research (Centre of Excellence AgroCropFuture ‘Agroecology and new crops in future climates’, TK200) and the Estonian Research Council (PRG1065 & PRG2584) (M.M., J.D. and M.Z.), and Czech Science Foundation (22-06936S) (P.K.). The authors are grateful to M. Öpik and M. Lepik for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mari Moora.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Xubing Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Community mycorrhization flexibility

The overall potential mycorrhizal plasticity of the community, defined as the community-weighted mean of the standard deviation of the mycorrhizal colonization rate of the species.

Community mycorrhization rate

A proxy of the overall potential mycorrhizal dependence of the plant community, calculated as the community-weighted mean of the average mycorrhizal root colonization rate of the species.

Flexibility-specific mycorrhization

The share of plants that are flexible with respect to mycorrhiza in the community.

Fungal hyphae

Branching filamentous fungal structures in soil and plant roots that are involved in nutrient absorption and transport.

Mycorrhizal conservatism

High proportion of evolutionarily ancient mycorrhizal types and statuses.

Mycorrhizal dependency

The difference in plant growth between mycorrhizal and nonmycorrhizal treatments.

Mycorrhizal innovation

High proportion of evolutionarily recent mycorrhizal types and statuses.

Plant community mycorrhization

A proxy measure of the degree to which a plant community relies on mycorrhiza.

Resistance

The ability of a plant to reduce the performance of an antagonist.

Status-specific mycorrhization

The share of plants of a particular mycorrhizal status in the plant community.

Tolerance

The ability of a plant to recover from an antagonist.

Type-specific mycorrhization

The share of plants of a particular mycorrhizal type in the plant community.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moora, M., Davison, J., Kohout, P. et al. The importance of the plant mycorrhizal collaboration niche across scales. Nat. Rev. Biodivers. 1, 262–273 (2025). https://doi.org/10.1038/s44358-025-00030-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00030-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing