Table 2 Model fit evaluation of comprehensive (ALCS) and empirical (ALES) algorithmsa

From: Allostatic load calculation in a Chilean older-adults cohort reveals the need for age-specific clinical thresholds

a. Likelihood ratio tests for original, corrected and IL6 biomarker inclusion algorithms

ALCS-original

χ² (9)= 10.371, p= 0.321

ALES-original

χ² (9)= 16.309, p= 0.061

ALCS-corrected

χ² (9)= 17.098, p= 0.047

ALES-corrected

χ² (9)= 19.012, p= 0.025*

ALCS-corrected + IL-6

χ² (9)= 16.952, p= 0.049

ALES-corrected + IL-6

χ² (9)= 20.844, p= 0.013*

b. Comparison between algorithms showing best model fit

 

Model fitting

Pseudo R²

Δ R²

BIC

Δ BIC

Log-likelihood (LL)

Δ LL

ALES-corrected

χ² (9)= 19.012, p= 0.025

0.048

REF

408.54

REF

−173.599

REF

ALES-corrected +IL-6

χ² (9)= 20.844, p= 0.013

0.054

0.006

396.19

−12.356b

−167.421

6.178

Rate of correct classification

Very-low

Low

Medium

High

Overall

ALES-corrected

observed

6

39

53

68

166

predicted

0

1

20

51

72

% correct

0

2.6

37.7

75

43.4

ALES-corrected +IL-6

observed

6

36

79

45

166

predicted

0

5

70

5

80

% correct

0

13.9

88.6

11.1

48.2

p̂ Comparisons

pooled p̂

0

0.08

0.682

0.496

0.458

SEDp

0

0.297

0.118

0.234

0.081

z

0

0.381

4.308

2.727

0.595

p (a = 0.05)

0.5

0.352

<0.001

0.003

0.276

Inter-rater reliability

p Agreement

p Error

Cohen's κ

SEκ

95% CI

Z transformed

P

 0.843

0.023

0.798

0.046

0.707

0.889

17.199

<0.001

  1. BIC Bayesian Information Criterion, BIC Δ Difference in BIC compared with the classic empirical AL scoring algorithm.
  2. *Satisfactory model fit (α = 0.05).
  3. aMultinomial logistic regression (MLR): AL category = Sex + Age + Years of education + ε.
  4. bSubstantial decrease in BIC.