Table 2 Comparative performance of predictive models for future glucose levels, using Root Mean Square Errors (rMSE)

From: A large sensor foundation model pretrained on continuous glucose monitor data for diabetes management

Model

Dataset

rMSE-30m

rMSE-1h

rMSE-2h

LSTM

OhioT1DM

36.022 (0.551)

37.17 (0.513)

38.703 (0.461)

RNN

36.102 (0.552)

37.344 (0.512)

38.952 (0.458)

GRU

37.555 (0.554)

38.573 (0.517)

40.108 (0.463)

Transformer

27.886 (0.463)

30.869 (0.462)

36.653 (0.47)

Informer

35.197 (0.501)

36.962 (0.485)

40.204 (0.463)

Autoformer

36.08 (0.552)

38.352 (0.542)

41.395 (0.515)

CGMLSM

9.024 (0.168)

15.895 (0.283)

26.876 (0.43)

CGM-LSM

WellDoc T1D

Internal Test

8.403 (0.066)

16.049 (0.118)

28.277 (0.188)

Temporal Test

9.155 (0.068)

17.013 (0.118)

29.426 (0.184)

Held-Out Test

8.926 (0.056)

16.905 (0.101)

29.812 (0.16)

WellDoc T2D

Internal Test

7.441 (0.055)

13.418 (0.094)

22.649 (0.147)

Temporal Test

8.025 (0.058)

14.073 (0.095)

23.216 (0.143)

Held-Out Test

7.772 (0.055)

13.877 (0.091)

23.494 (0.143)

  1. Each entry displays the mean rMSE followed by the confidence interval width in parentheses, indicating the range within which the true mean is expected to lie with 95% confidence.