Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 168 results
Advanced filters: Author: Alfred Wright Clear advanced filters
  • Resting T cells are difficult to manipulate, and are a reservoir for latent HIV. Here, the authors develop a lipid nanoparticle formulation with the ability to transfect resting primary human T cells, enabling delivery of mRNAs that result in reactivation of latent HIV. This could help development of HIV cure strategies.

    • Paula M. Cevaal
    • Stanislav Kan
    • Michael Roche
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Analysis of genomic and clinical features of acute erythroid leukemia in comparison to other myeloid disorders supports its distinct classification, defines subgroups and suggests therapeutic vulnerabilities.

    • Ilaria Iacobucci
    • Ji Wen
    • Charles G. Mullighan
    Research
    Nature Genetics
    Volume: 51, P: 694-704
  • It is uncertain how much life expectancy of the Chinese population would improve under current and greater policy targets on lifestyle-based risk factors for chronic diseases and mortality behaviours. Here we report a simulation of how improvements in four risk factors, namely smoking, alcohol use, physical activity and diet, could affect mortality. We show that in the ideal scenario, that is, all people who currently smokers quit smoking, excessive alcohol userswas reduced to moderate intake, people under 65 increased moderate physical activity by one hour and those aged 65 and older increased by half an hour per day, and all participants ate 200 g more fresh fruits and 50 g more fish/seafood per day, life expectancy at age 30 would increase by 4.83 and 5.39 years for men and women, respectively. In a more moderate risk reduction scenario referred to as the practical scenario, where improvements in each lifestyle factor were approximately halved, the gains in life expectancy at age 30 could be half those of the ideal scenario. However, the validity of these estimates in practise may be influenced by population-wide adherence to lifestyle recommendations. Our findings suggest that the current policy targets set by the Healthy China Initiative could be adjusted dynamically, and a greater increase in life expectancy would be achieved.

    • Qiufen Sun
    • Liyun Zhao
    • Chan Qu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • The crystal structure of the trp RNA-binding attenuation protein of Bacillus subtilis solved at 1.8 Ă… resolution reveals a novel structural arrangement in which the eleven subunits are stabilized through eleven intersubunit β-sheets to form a β-wheel with a large central hole. The nature of the binding of L-tryptophan in clefts between adjacent β-sheets in the β-wheel suggests that this binding induces conformational changes in the flexible residues 25-33 and 49-52. It is argued that upon binding, the messenger RNA target forms a matching circle in which eleven U/GAG repeats are bound to the surface of the protein ondecamer modified by the binding of L-tryptophan.

    • Alfred A. Antson
    • John Otridge
    • Paul Gollnick
    Research
    Nature
    Volume: 374, P: 693-700
    • ALFRED MORRIS
    Research
    Nature
    Volume: 21, P: 302
  • People living in rural areas of the United States have poorer outcomes from acute COVID-19. Here, the authors show that higher mortality rates among rural dwellers persist for up to two years after the initial infection, even after accounting for baseline risk factors.

    • A. Jerrod Anzalone
    • Michael T. Vest
    • Christopher G. Chute
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Proteome allocation to anabolic and catabolic functions is significantly regulated by growth rate in the model bacterium Escherichia coli. By contrast, this article shows that proteome allocation is only partially controlled by growth rate, and metabolic rates are primarily controlled post-translationally, in the thermophilic acetogen Thermoanaerobacter kivui.

    • Franziska Maria Mueller
    • Albert Leopold MĂĽller
    • Alfred Michael Spormann
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many recent proteomics studies use either Olink or SomaScan platforms to quantify proteins in high-throughput, but the consistency between the two is unclear. Here, the authors measure proteins in the same samples using both platforms, finding only modest correlation, and compare associations with genetic variants and disease.

    • Baihan Wang
    • Alfred Pozarickij
    • Zhengming Chen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13