Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–7 of 7 results
Advanced filters: Author: Allyson Bieryla Clear advanced filters
  • A nine-year transit-timing campaign has measured the extremely low masses and densities of four large planets orbiting the young star V1298 Tau, which are now predicted to contract and form a typical compact super-Earth and sub-Neptune system.

    • John H. Livingston
    • Erik A. Petigura
    • Lorenzo Pino
    ResearchOpen Access
    Nature
    Volume: 649, P: 310-314
  • The atmospheres of white dwarfs often contain elements heavier than helium, even though these elements would be expected to settle into the stars’ interiors; observations of the white dwarf WD 1145+017 suggest that disintegrating rocky bodies are orbiting the star, perhaps contributing heavy elements to its atmosphere.

    • Andrew Vanderburg
    • John Asher Johnson
    • Jason T. Wright
    Research
    Nature
    Volume: 526, P: 546-549
  • A recent supernova event, SN2016aps, must have involved an extremely energetic explosion and a very massive star, potentially indicating a pair-instability supernova or pulsational pair-instability supernova mechanism.

    • Matt Nicholl
    • Peter K. Blanchard
    • Kerry Paterson
    Research
    Nature Astronomy
    Volume: 4, P: 893-899
  • LTT 9779 b is Neptune-sized planet rotating around its star with a period of 0.79 days and an equilibrium temperature of 2,000 K. It is not clear how it retained its atmospheric envelope, which contains ~10% of H/He, as it should have been photoevaporated by now.

    • James S. Jenkins
    • Matías R. Díaz
    • Andrew W. Mann
    Research
    Nature Astronomy
    Volume: 4, P: 1148-1157