Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 286 results
Advanced filters: Author: Benjamin D. Hoffmann Clear advanced filters
  • In the phase 1/2 TRIDENT-1 trial, treatment of patients with NTRK fusion–positive advanced solid tumors with the tyrosine kinase inhibitor repotrectinib—selective for ROS1, TRKA−C and ALK—was safe and resulted in durable systemic and intracranial clinical response.

    • Benjamin Besse
    • Jessica J. Lin
    • Benjamin J. Solomon
    ResearchOpen Access
    Nature Medicine
    P: 1-8
  • Generation of orbital currents in a non-magnetic material can be useful to build efficient orbitronic devices. Now, the interplay of chiral phonons and electrons is shown to produce orbital currents in α-quartz.

    • Yoji Nabei
    • Cong Yang
    • Dali Sun
    Research
    Nature Physics
    P: 1-7
  • Antisense oligonucleotide (ASO) cellular activity requires endosomal escape. Here, the authors show that disrupting Golgi-endosome protein AP1M1 enhances ASO activity by prolonging ASO endosomal residence and increasing the likelihood of endosomal escape.

    • Liza Malong
    • Jessica Roskosch
    • Filip Roudnicky
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-21
  • Interesting proximity effects can occur at the interface of superconducting and ferromagnetic oxides, but they are poorly understood. Here, the authors use scanning tunnelling and electron microscopy techniques to investigate such an interface, showing that the charge transfer has an upper limit of 1 nm.

    • Te Yu Chien
    • Lena F. Kourkoutis
    • John W. Freeland
    Research
    Nature Communications
    Volume: 4, P: 1-7
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • u-Segment3D is a universal framework that translates and enhances 2D instance segmentations to a 3D consensus instance segmentation without training data. It performs well across diverse datasets, including cells with complex morphologies.

    • Felix Y. Zhou
    • Zach Marin
    • Gaudenz Danuser
    ResearchOpen Access
    Nature Methods
    Volume: 22, P: 2386-2399
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • NextBrain is an open source, probabilistic atlas of the entire human brain, assembled using artificial-intelligence-enabled registration and segmentation methods to reconstruct the multimodal serial histology of five human half brains, and which can be used to automatically segment brain MRI scans into 333 regions.

    • Adrià Casamitjana
    • Matteo Mancini
    • Juan Eugenio Iglesias
    ResearchOpen Access
    Nature
    Volume: 648, P: 678-685
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors develop a high-speed remote focusing method for volumetric voltage imaging enabling imaging at 500 volumes/s. This is combined with light sheet microscopy to record data from >100 spontaneously active neurons in parallel.

    • Urs L. Böhm
    • Benjamin Judkewitz
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-6
  • Time-resolved electron microscopy reveals that intersectin-1 and endophilin A1 condensates hold replacement synaptic vesicles close to release sites. Without this, replacement vesicles are unavailable for immediate use, causing synaptic depression in response to stimulation trains.

    • Tyler H. Ogunmowo
    • Christian Hoffmann
    • Shigeki Watanabe
    ResearchOpen Access
    Nature Neuroscience
    Volume: 28, P: 1649-1662
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors defined a roadmap for investigating the genetic covariance between structural or functional brain phenotypes and risk for psychiatric disorders. Their proof-of-concept study using the largest available common variant data sets for schizophrenia and volumes of several (mainly subcortical) brain structures did not find evidence of genetic overlap.

    • Barbara Franke
    • Jason L Stein
    • Patrick F Sullivan
    Research
    Nature Neuroscience
    Volume: 19, P: 420-431
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Emerging SARS-CoV-2 variants with mutations in the spike protein raise concerns regarding vaccine efficacy. Here, the authors show that two spike encoding mRNA vaccines in preclinical and clinical development protect human ACE2 mice from the B.1.351 variant of concern and ancestral B BavPat1.

    • Donata Hoffmann
    • Björn Corleis
    • Martin Beer
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • Studies in humans and mice show that myocardial infarction recruits monocytes to the brain’s thalamus, promoting sleep, which in turn restricts cardiac inflammation and sympathetic signalling and assists healing.

    • Pacific Huynh
    • Jan D. Hoffmann
    • Cameron S. McAlpine
    Research
    Nature
    Volume: 635, P: 168-177
  • This analysis of whole-genome sequencing data from 421 multiple myeloma samples elucidates the timing of key genomic events and shows associations between the timing of 1q gain and clinical outcome.

    • Francesco Maura
    • Marcella Kaddoura
    • Niels Weinhold
    Research
    Nature Genetics
    Volume: 57, P: 2203-2214
  • Tertiary lymphoid structures play important roles during homeostatic but also immunopathological conditions including autoimmune disorders. Here the authors integrate single cell sequencing with spatial proteomics and transcriptomics to define a cellular and spatial map of tertiary lymphoid structures in salivary glands of patients with Sjogren’s syndrome.

    • Saba Nayar
    • Jason D. Turner
    • Francesca Barone
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • Here the authors apply machine learning approaches to Alzheimer’s genetics, confirm known associations and suggest novel risk loci. These methods demonstrate predictive power comparable to traditional approaches, while also offering potential new insights beyond standard genetic analyses.

    • Matthew Bracher-Smith
    • Federico Melograna
    • Valentina Escott-Price
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16