Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 340 results
Advanced filters: Author: Brian Xiao Clear advanced filters
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Inhibition of the histone methyltransferase NSD2 and the androgen receptor in preclinical models can reverse lineage plasticity to suppress tumour growth and promote cell death in multiple subtypes of castration-resistant prostate cancer.

    • Jia J. Li
    • Alessandro Vasciaveo
    • Michael M. Shen
    ResearchOpen Access
    Nature
    Volume: 649, P: 216-226
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • A pangenome of oat, assembled from 33 wild and domesticated oat lines, sheds light on the evolution and genetic diversity of this cereal crop and will aid genomics-assisted breeding to improve productivity and sustainability.

    • Raz Avni
    • Nadia Kamal
    • Martin Mascher
    ResearchOpen Access
    Nature
    Volume: 649, P: 131-139
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • The affected cellular populations during Alzheimer’s disease progression remain understudied. Here the authors use a cohort of 84 donors, quantitative neuropathology and multimodal datasets from the BRAIN Initiative. Their pseudoprogression analysis revealed two disease phases.

    • Mariano I. Gabitto
    • Kyle J. Travaglini
    • Ed S. Lein
    ResearchOpen Access
    Nature Neuroscience
    Volume: 27, P: 2366-2383
  • A proteotoxic stress response specific to exhausted T cells, governed by AKT signaling and accompanied by increased protein translation, represents a mechanistic vulnerability and a new therapeutic target to improve cancer immunotherapies.

    • Yi Wang
    • Anjun Ma
    • Zihai Li
    ResearchOpen Access
    Nature
    Volume: 647, P: 1025-1035
  • The authors summarize the data produced by phase III of the Encyclopedia of DNA Elements (ENCODE) project, a resource for better understanding of the human and mouse genomes.

    • Federico Abascal
    • Reyes Acosta
    • Zhiping Weng
    ResearchOpen Access
    Nature
    Volume: 583, P: 699-710
  • Nano-apertures cannot distinguish between distinct spin-states of photons because of information loss upon light-aperture interaction. Here, Du et al.report a subwavelength aperture integrated with metasurfaces which breaks spin degeneracy and produces opposite transmission spectra over a broad spectral range.

    • Luping Du
    • Shan Shan Kou
    • Jiao Lin
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-7
  • RNAtracker is a computational pipeline that distinguishes variants associated with allele-specific RNA stability from those associated with allele-specific RNA transcription. Variants affecting RNA stability are enriched in immune-related genes and contribute to disease risk.

    • Elaine Huang
    • Ting Fu
    • Xinshu Xiao
    Research
    Nature Genetics
    Volume: 57, P: 2578-2588
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Hypoglycemia is a serious and potentially life-threatening condition for people with insulin dependent diabetes, but preventative hypoglycemia therapies are elusive. Here, the authors report the use of catechol and boronic acid chemistry to design a self-crosslinkable hydrogel-based microneedle patch that delivers Zinc-Glucagon at low glucose levels and prevents insulin-induced hypoglycemia.

    • Amin GhavamiNejad
    • Jackie Fule Liu
    • Xiao Yu Wu
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • A meta-analysis of genome-wide association studies of type 2 diabetes (T2D) identifies more than 600 T2D-associated loci; integrating physiological trait and single-cell chromatin accessibility data at these loci sheds light on heterogeneity within the T2D phenotype.

    • Ken Suzuki
    • Konstantinos Hatzikotoulas
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 627, P: 347-357
  • Although the common genetic variants contributing to blood lipid levels have been studied, the contribution of rare variants is less understood. Here, the authors perform a rare coding and noncoding variant association study of blood lipid levels using whole genome sequencing data.

    • Margaret Sunitha Selvaraj
    • Xihao Li
    • Pradeep Natarajan
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • Single-cell transcriptomic analysis of mouse hypothalamus and behavioural experiments show that specific hypothalamic networks regulate conflicting feeding versus parenting behaviours of female mice.

    • Ivan C. Alcantara
    • Chia Li
    • Michael J. Krashes
    Research
    Nature
    Volume: 645, P: 981-990
  • ctDNA is a useful tool for the diagnosis of cancer, however, it is usually focused on targeted deep sequencing. Here, the authors develop a methodology to assess TET-assisted pyridine borane whole-genome sequencing data for cancer detection without a matched biopsy.

    • Dimitrios V. Vavoulis
    • Anthony Cutts
    • Anna Schuh
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12