Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–10 of 10 results
Advanced filters: Author: Isabel Guillamón Clear advanced filters
  • Bound states in superconducting vortices are expected to exhibit an electron-hole asymmetry, but it is usually tiny and can be easily washed out. Here, the authors show that the vortex bound states coupling to magnetic impurities provides an axial electron-hole asymmetry on a much longer scale, and that the direction of the asymmetry depends on the band character of the superconducting material.

    • Sunghun Park
    • Víctor Barrena
    • Hermann Suderow
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • Due to their small size, atomic-scale Josephson junctions are vulnerable to thermal fluctuations. Escribano et al. show that introducing a delayed feedback element, a common method to mitigate thermal noise, induces spontaneous oscillations that enhance capabilities of Josephson microscopy.

    • Samuel D. Escribano
    • Víctor Barrena
    • Hermann Suderow
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • A microscopy technique allows the identification of parameters in a paradigmatic model of condensed-matter physics.

    • Isabel Guillamón
    News & Views
    Nature Physics
    Volume: 17, P: 1077-1078
  • By using millikelvin scanning tunnelling microscopy to study atomically flat terraces on U-terminated surfaces of the heavy-fermion superconductor URu2Si2, the two-dimensional heavy fermions are shown to form quantum-well states on the surface.

    • Edwin Herrera
    • Isabel Guillamón
    • Hermann Suderow
    ResearchOpen Access
    Nature
    Volume: 616, P: 465-469
  • Applications of high temperature superconductors often use layers of materials, and the application of a magnetic field to these layers can generate disk-like pancake vortices within layers crossed with vortices in between layers. The authors present low temperature magnetic force microscopy imaging on a layered superconducting crystal and demonstrate that they are able to manipulate the crossed vortex lattices, hence making this technique an ideal tool for imaging and manipulating superconducting vortices.

    • Alexandre Correa
    • Federico Mompeán
    • Carmen Munuera
    ResearchOpen Access
    Communications Physics
    Volume: 2, P: 1-7
  • URu2Si2 is known to exhibit a lower temperature phase transition termed a ‘hidden order’ due to the difficulty its detection using conventional solid-state probes and the exact mechanism still remains unknown. Here, the authors use scanning tunnelling microscopy to reveal a 1D charge density wave for cleaved samples of URu2Si2 and demonstrate a potential connection with the hidden order state.

    • Edwin Herrera
    • Víctor Barrena
    • Hermann Suderow
    ResearchOpen Access
    Communications Physics
    Volume: 4, P: 1-6