Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 84 results
Advanced filters: Author: Isabelle Hua Clear advanced filters
  • Incorporating binding sites for metal ions into DNA strands that assemble into well-defined three-dimensional structures has enabled researchers to build metal-nucleic acid cages. There is potential for the geometry, pore size and chemistry of such materials to be easily tuned, which may prove useful for applications in molecular sensing and encapsulation.

    • Hua Yang
    • Christopher K. McLaughlin
    • Hanadi F. Sleiman
    Research
    Nature Chemistry
    Volume: 1, P: 390-396
  • The enzyme cGAS induces innate immune responses upon recognition of cytosolic DNA. Here, using in vitro and in vivo models, the authors identify DNA-PK as a negative regulator of cGAS signalling.

    • Xiaona Sun
    • Ting Liu
    • Junjie Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Retinoblastoma is the most frequent intraocular paediatric malignancy whose molecular basis remains poorly understood. Here, the authors perform multi-omic analysis and identify two subtypes; one in a cone differentiated state and one more aggressive showing cone dedifferentiation and expressing neuronal markers.

    • Jing Liu
    • Daniela Ottaviani
    • François Radvanyi
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-20
  • Loss-of-function variants in thyroid hormone transporter MCT8 cause a neurodevelopmental and metabolic disorder. Here the authors identify genotype-phenotype relationships, advance insights in MCT8 (dys)function and create a pathogenicity-severity variant classifier.

    • Stefan Groeneweg
    • Ferdy S. van Geest
    • W. Edward Visser
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-21
  • Deletion of upstream tumor suppressors of the Hippo/YAP pathway is frequent in papillary renal cell carcinoma (pRCC). Here, the authors employ a transgenic mouse model, single-cell transcriptomics and public genomic datasets to show that targeting hyperactivated YAP1 prevents neoplastic renal epithelial cell immune evasion and impairs the development of pRCC.

    • Xiangmin Lv
    • Jiyuan Liu
    • Cheng Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Here, the authors present Paraphase, a HiFi-based informatics method that resolves highly similar genes located in segmental duplications. They apply Paraphase to 316 paralogous genes and summarize extensive genetic diversity across populations.

    • Xiao Chen
    • Daniel Baker
    • Michael A. Eberle
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Functional diversity and phylogenetic diversity are expected to be positively correlated. Here the authors show that the covariation between these metrics in vascular plant communities around the world is often either inconsistent or negative.

    • Georg J. A. Hähn
    • Gabriella Damasceno
    • Helge Bruelheide
    Research
    Nature Ecology & Evolution
    Volume: 9, P: 237-248
  • Genomic analysis of Plasmodium DNA from 36 ancient individuals provides insight into the global distribution and spread of malaria-causing species during around 5,500 years of human history.

    • Megan Michel
    • Eirini Skourtanioti
    • Johannes Krause
    ResearchOpen Access
    Nature
    Volume: 631, P: 125-133
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • There is growing recognition of the metabolic links between metabolic dysfunction-associated steatotic liver disease (MASLD) and sarcopenia and the need to take these links into account when diagnosing and treating these two diseases. This Review covers connections between MASLD, sarcopenia and metabolic syndrome and discusses how care for patients affected by these diseases is evolving.

    • Chang-Hai Liu
    • Qing-Min Zeng
    • Ming-Hua Zheng
    Reviews
    Nature Reviews Endocrinology
    P: 1-14
  • Stephanie London, Martin Tobin and colleagues report meta-analyses of genome-wide association studies for forced vital capacity (FVC), a spirometric measure of pulmonary function that reflects lung volume. They identify six regions newly associated with FVC and demonstrate that candidate genes at these loci are expressed in lung tissue and primary lung cells.

    • Daan W Loth
    • María Soler Artigas
    • Stephanie J London
    Research
    Nature Genetics
    Volume: 46, P: 669-677
  • In this work, the authors unveil a mechanism where the Citron homology domain regulates HPK1’s kinase domain, shedding light on the relationship between HPK1’s structure and function. This enhances our understanding of HPK1, an intracellular target for cancer immunotherapy and provides a direction for immuno-oncology drug discovery.

    • Avantika S. Chitre
    • Ping Wu
    • Weiru Wang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • Martin Tobin and colleagues report a meta-analysis of 23 genome-wide association studies for pulmonary function. They identify 16 loci newly associated with variation in two cross-sectional measures of lung function, used to define airway obstruction and to grade the severity of obstruction.

    • María Soler Artigas
    • Daan W Loth
    • Martin D Tobin
    Research
    Nature Genetics
    Volume: 43, P: 1082-1090
  • The capacity of cancer cells to migrate is intimately linked to their ability to induce metastasis. Here the authors show that the sodium channel β4 subunit regulates breast cancer cell migration via inhibition of RhoA activation, independently from its function as an auxiliary protein of the sodium channel.

    • Emeline Bon
    • Virginie Driffort
    • Sébastien Roger
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-18
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352