Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 172 results
Advanced filters: Author: Jason R. Burke Clear advanced filters
  • Polymorphism, the presence of different crystal structures of the same molecular system, provides an opportunity to discover new phenomena and properties. Here, the authors crystallize coronene in the presence of a magnetic field, forming a different polymorph, which remains stable under ambient conditions.

    • Jason Potticary
    • Lui R. Terry
    • Simon R. Hall
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • The use of a universal chemical programming language (χDL) to encode and execute synthesis procedures for a variety of chemical reactions is reported, including reductive amination, ring formation, esterification, carbon–carbon bond formation and amide coupling. These procedures are validated and repeated in two international laboratories and on three independent robots.

    • Robert Rauschen
    • Mason Guy
    • Leroy Cronin
    Research
    Nature Synthesis
    Volume: 3, P: 488-496
  • The Suzuki-Miyaura cross coupling is widely used in industrial and academic settings for the formation of carbon-carbon bonds. Here, the authors report a procedure whereby a molecule with multiple reactive carbon-boron bonds can undergo sequential, selective Suzuki-Miyaura reactions without the need for protecting groups.

    • Cathleen M. Crudden
    • Christopher Ziebenhaus
    • Daisuke Imao
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Disassembly of three-dimensionally ordered materials generates nanoparticles with new structural and physicochemical properties. Here the authors show a fragmentation strategy applied to a perovskite material leading to nanostructures with improved catalytic activity in the methane combustion.

    • Yuan Wang
    • Hamidreza Arandiyan
    • Rose Amal
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • Group-IV color centers in diamond show promise for spin-photon interfaces, but precise positioning and activation are challenging. Here the authors combine site-controlled ion implantation with laser annealing and in-situ photoluminescence monitoring to create and tune individual tin vacancy centers in diamond.

    • Xingrui Cheng
    • Andreas Thurn
    • Dorian A. Gangloff
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Scanning tunnelling microscopy shows that electrons in twisted bilayer graphene are strongly correlated for a wide range of density. In particular, a correlated regime appears near charge neutrality and theory suggests nematic ordering.

    • Youngjoon Choi
    • Jeannette Kemmer
    • Stevan Nadj-Perge
    Research
    Nature Physics
    Volume: 15, P: 1174-1180
  • Parity induces an accumulation of CD8+ T cells, including cells with a tissue-resident-memory-like phenotype within human normal breast tissue, offering long-term protection against triple-negative breast cancer.

    • Balaji Virassamy
    • Franco Caramia
    • Sherene Loi
    ResearchOpen Access
    Nature
    Volume: 649, P: 449-459
  • Bandit optimization models are used to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback.

    • Jason Y. Wang
    • Jason M. Stevens
    • Abigail G. Doyle
    Research
    Nature
    Volume: 626, P: 1025-1033
  • The authors analyze rare coding variants in 1990 individuals with congenital kidney anomalies, finding diagnostic variants in 14.1% of cases. They identify two new causal genes, ARID3A and NR6A1, along with 38 candidate genes, providing evidence for shared genetics with other developmental disorders.

    • Hila Milo Rasouly
    • Sarath Babu Krishna Murthy
    • Ali G. Gharavi
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • Exome-sequencing analyses of a large cohort of patients with type 2 diabetes and control individuals without diabetes from five ancestries are used to identify gene-level associations of rare variants that are associated with type 2 diabetes.

    • Jason Flannick
    • Josep M. Mercader
    • Michael Boehnke
    ResearchOpen Access
    Nature
    Volume: 570, P: 71-76
  • Ancestral sequence inference, directed evolution, structural analysis, NMR, and molecular dynamics simulations illuminate how enantioselective activity arises during the evolutionary trajectory of chalcone isomerase from a noncatalytic ancestor.

    • Miriam Kaltenbach
    • Jason R. Burke
    • Dan S. Tawfik
    Research
    Nature Chemical Biology
    Volume: 14, P: 548-555
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Mutations in the LaminA gene are the second most common inherited cause of Dilated Cardiomyopathy, a major form of heart failure. Here the authors show that disruption of the nuclear protein SUN1 in cardiomyocytes, by AAV mediated transduction of a SUN1 inhibitor, significantly suppress cardiomyopathy progression, providing a potential therapeutic route to treat this disease.

    • Ruth Jinfen Chai
    • Hendrikje Werner
    • Colin L. Stewart
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • The development of catalysts that operate under low concentration CO2 resembling industrial waste gases holds promise for CO2 reduction. Here, the authors report a vacuum calcination approach for regulating the Cu0/Cu1+ density on Cu-based catalysts that can electro-catalyze low-concentration CO2.

    • Liangyiqun Xie
    • Yanming Cai
    • Wenlei Zhu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • Iridium oxide is the state-of-the-art catalyst for water oxidation in an acidic electrolyte. Now amorphous and crystalline iridium oxides are studied using operando time-resolved optical spectroscopy, together with other techniques, to reveal the nature and density of active centres and the role of adsorbate–adsorbate interactions.

    • Caiwu Liang
    • Reshma R. Rao
    • Ifan E. L. Stephens
    ResearchOpen Access
    Nature Catalysis
    Volume: 7, P: 763-775
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Copper-based catalysts are promising for electroreduction of carbon monoxide to multi-carbon products, yet further improvements in selectivity, productivity and stability are still needed. Here the authors show that doping copper with silver and ruthenium boosts its performance towards synthesis of n-propanol—a useful fuel.

    • Xue Wang
    • Pengfei Ou
    • Edward H. Sargent
    Research
    Nature Energy
    Volume: 7, P: 170-176
  • Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Here the authors report a data-driven approach for understanding catalytic reactions mechanisms in dilute bimetallic catalysts by combining X-ray absorption spectroscopy with activity studies and kinetic modeling.

    • Nicholas Marcella
    • Jin Soo Lim
    • Anatoly I. Frenkel
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-9
  • Analyses of samples from patients with acute myeloid leukaemia reveal that drug response is associated with mutational status and gene expression; the generated dataset provides a basis for future clinical and functional studies of this disease.

    • Jeffrey W. Tyner
    • Cristina E. Tognon
    • Brian J. Druker
    Research
    Nature
    Volume: 562, P: 526-531
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Ferrets constitute a useful model for influenza research because they are susceptible to human-adapted flu viruses. Here, the authors show that ferrets, like humans, lack a functional CMAH enzyme and synthesize a single type of sialic acid (Neu5Ac), resulting in naturally humanized influenza virus receptors.

    • Preston S.K. Ng
    • Raphael Böhm
    • Michael P. Jennings
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-9
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.

    • Shaohong Feng
    • Josefin Stiller
    • Guojie Zhang
    Research
    Nature
    Volume: 587, P: 252-257
  • Transition metal fluorides have high theoretical specific capacities as cathodes for lithium ion batteries, but low working potentials and poor energy efficiency limit their practical applications. Here, the authors report a group of ternary metal fluorides, which may overcome these problems.

    • Feng Wang
    • Sung-Wook Kim
    • Jason Graetz
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-9
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The development of metal–organic magnets that combine tunable magnetic properties with other desirable physical properties remains challenging despite numerous potential applications. Now, a mixed-valent chromium–triazolate material has been prepared that exhibits itinerant ferromagnetism with a magnetic ordering temperature of 225 K, a high conductivity and large negative magnetoresistance (23%).

    • Jesse G. Park
    • Brianna A. Collins
    • Jeffrey R. Long
    Research
    Nature Chemistry
    Volume: 13, P: 594-598
  • Producing valuable chemicals from carbon dioxide, water and sunlight through artificial conversion schemes remains a challenging and ambitious goal in photocatalysis. Here, the authors introduce an effective approach for the synthesis of C2+ compounds using a binary AuIr catalyst in combination with InGaN nanowires.

    • Baowen Zhou
    • Yongjin Ma
    • Zetian Mi
    Research
    Nature Catalysis
    Volume: 6, P: 987-995
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The design of solution-processed thermoelectric nanomaterials with efficient, stable performance remains a challenge. Here, the authors report an in-situ doping method based on nanoscale interface engineering to realize n-type thermoelectric nanowires with high performance and stability.

    • Ayaskanta Sahu
    • Boris Russ
    • Jeffrey J. Urban
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • The electroreduction of CO2 offers a promising approach to produce carbon-neutral methane using renewable electricity. This study shows that the introduction of Au in Cu enables selective methane production from CO2 by regulating *CO availability.

    • Xue Wang
    • Pengfei Ou
    • Edward H. Sargent
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-7
  • Skutterudites are a family of materials whose properties make them appealing for studying thermoelectric, magnetic, heavy-fermion and superconducting effects, among many others. Through a combination of theoretical and experimental approaches, this study identifies 43 new skutterudite compounds.

    • Huixia Luo
    • Jason W. Krizan
    • Robert J. Cava
    Research
    Nature Communications
    Volume: 6, P: 1-10
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16