Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 189 results
Advanced filters: Author: Joshua Knight Clear advanced filters
  • T cells contribute to protection and pathogenesis in tuberculosis. Here the authors sequence T cell receptor repertoires in human skin biopsies from the site of the tuberculin skin test and show enrichment of clonotypes reactive to Mycobacterium tuberculosis using a computational pipeline metaclonotypist to identify distinct TCRs predicted to share peptide-MHC reactivity across participants, as an approach to explore T cell correlates of tuberculosis disease-risk stratification and vaccine efficacy.

    • Carolin T. Turner
    • Andreas Tiffeau-Mayer
    • Mahdad Noursadeghi
    ResearchOpen Access
    Nature Communications
    P: 1-16
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • The heterogeneity of whole-exome sequencing (WES) data generation methods presents a challenge to joint analysis. Here, the authors present a bioinformatics strategy to generate high-quality data from processing diversely generated WES samples, as applied in the Alzheimer’s Disease Sequencing Project.

    • Yuk Yee Leung
    • Adam C. Naj
    • Li-San Wang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Analysis of 97,691 high-coverage human blood DNA-derived whole-genome sequences enabled simultaneous identification of germline and somatic mutations that predispose individuals to clonal expansion of haematopoietic stem cells, indicating that both inherited and acquired mutations are linked to age-related cancers and coronary heart disease.

    • Alexander G. Bick
    • Joshua S. Weinstock
    • Pradeep Natarajan
    Research
    Nature
    Volume: 586, P: 763-768
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Here the authors perform a trans expression quantitative trait locus meta-analysis study of over 3,700 people and link a USP18 variant to expression of 50 inflammation genes and lupus risk, highlighting how genetic regulation of immune responses drives autoimmune disease and informs new therapies.

    • Krista Freimann
    • Anneke Brümmer
    • Kaur Alasoo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • An FeIII/V redox mechanism in Li4FeSbO6 on delithiation without FeIV or oxygen formation with resistance to aging, high operating potential and low voltage hysteresis is demonstrated, with implications for Fe-based high-voltage applications.

    • Hari Ramachandran
    • Edward W. Mu
    • William C. Chueh
    Research
    Nature Materials
    Volume: 25, P: 91-99
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Extrachromosomal DNA (ecDNA) congregates in clusters called ecDNA hubs that promote intermolecular interactions between gene-regulatory regions and thereby amplify the expression of oncogenes such as MYC in cancer cell lines.

    • King L. Hung
    • Kathryn E. Yost
    • Howard Y. Chang
    Research
    Nature
    Volume: 600, P: 731-736
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The response to infectious and inflammatory challenges differs among people but the reasons for this are poorly understood. Here the authors explore the impact of variables such as age, sex, and the capacity for controlling inflammation and maintaining immunocompetence, linking this capacity to favourable health outcomes and lifespan.

    • Sunil K. Ahuja
    • Muthu Saravanan Manoharan
    • Weijing He
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-31
  • By integrating large-scale genomic and proteomic data in cerebrospinal fluid and plasma, the authors identify 49 proteins linked to MRI markers of cerebral small vessel disease, highlighting extracellular matrix and immune pathways, with biomarker and therapeutic potential.

    • Ilana Caro
    • Daniel Western
    • Stéphanie Debette
    ResearchOpen Access
    Nature Aging
    Volume: 5, P: 2514-2531
  • Na-ion batteries offer multiple advantages, but there is a critical need for improved materials and understanding of sodiation mechanisms. Here the authors deploy operando 23Na magnetic resonance imaging and spectroscopy to observe sodium battery chemistry and dendrite formation, enabling new insight.

    • Joshua M. Bray
    • Claire L. Doswell
    • Melanie M. Britton
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • This study establishes how aperiodic activity, a ubiquitous signal linked to neural noise, develops in localized brain regions and illuminates the development of prefrontal control during adolescence in the development of attention and memory.

    • Zachariah R. Cross
    • Samantha M. Gray
    • Elizabeth L. Johnson
    Research
    Nature Human Behaviour
    Volume: 9, P: 2548-2563
  • Emerging SARS-CoV-2 variants of concern were detected early and multiple cases of virus spread not captured by clinical genomic surveillance were identified using high-resolution wastewater and clinical sequencing.

    • Smruthi Karthikeyan
    • Joshua I. Levy
    • Rob Knight
    ResearchOpen Access
    Nature
    Volume: 609, P: 101-108
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease.

    • William J. Young
    • Najim Lahrouchi
    • Patricia B. Munroe
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-18
  • The CNV analysis group of the Psychiatric Genomic Consortium analyzes a large schizophrenia cohort to examine genomic copy number variants (CNVs) and disease risk. They find an enrichment of CNV burden in cases versus controls and identify 8 genome-wide significant loci as well as novel suggestive loci conferring either risk or protection to schizophrenia.

    • Christian R Marshall
    • Daniel P Howrigan
    • Jonathan Sebat
    Research
    Nature Genetics
    Volume: 49, P: 27-35
  • As phase 1 of the Earth Microbiome Project, analysis of 16S ribosomal RNA sequences from more than 27,000 environmental samples delivers a global picture of the basic structure and drivers of microbial distribution.

    • Luke R. Thompson
    • Jon G. Sanders
    • Hongxia Zhao
    ResearchOpen Access
    Nature
    Volume: 551, P: 457-463
  • The authors identified a protective genetic allele associated with lower PU.1 (SPI1) expression in myeloid cells by conducting a genome-wide scan of Alzheimer's disease (AD). PU.1 binds the promoters of AD-associated genes (e.g., CD33, MS4A4A & MS4A6A, TYROBP) and modulates their expression, suggesting it may reduce AD risk by regulating myeloid cell gene expression.

    • Kuan-lin Huang
    • Edoardo Marcora
    • Alison M Goate
    Research
    Nature Neuroscience
    Volume: 20, P: 1052-1061
  • Circular extrachromosomal DNA in high-risk medulloblastoma contributes to tumor heterogeneity and associates with relapse and survival. Enhancer rewiring events involving known oncogenes are frequent events, affecting transcription and proliferation.

    • Owen S. Chapman
    • Jens Luebeck
    • Lukas Chavez
    ResearchOpen Access
    Nature Genetics
    Volume: 55, P: 2189-2199
  • This large, multi-ethnic genome-wide association study identifies 97 loci significantly associated with atrial fibrillation. These loci are enriched for genes involved in cardiac development, electrophysiology, structure and contractile function.

    • Carolina Roselli
    • Mark D. Chaffin
    • Patrick T. Ellinor
    Research
    Nature Genetics
    Volume: 50, P: 1225-1233
  • A large-scale field intervention experiment on 23,377 US Facebook users during the 2020 presidential election shows that reducing exposure to content from like-minded social media sources has no measurable effect on political polarization or other political attitudes and beliefs.

    • Brendan Nyhan
    • Jaime Settle
    • Joshua A. Tucker
    ResearchOpen Access
    Nature
    Volume: 620, P: 137-144
  • It’s not always clear whether blood biomarkers are differentially expressed in the time course of viral infections. In this SARS-CoV-2 human challenge study, the authors identify distinct single-gene blood transcriptional biomarkers for early stages of infection or for symptomatic infection.

    • Joshua Rosenheim
    • Rishi K. Gupta
    • Mahdad Noursadeghi
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13